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We know that the O-stem is Z on any sphere S™ with n > 1, by the Hurewicz theorem. We know
the homotopy groups of S', by covering space theory.
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To calculate the differential E;,o — E;_LO, we take the element ¢ € ﬂp(QpHSQpH), apply p, to
obtain p(t) = wy, € mp—1(QPSP), and then apply h, to obtain h(w,) € m,—1(QPS?~1). The Hopf
invariant of the whitehead square w), is two when p is even and zero when p is odd.

Now we are able to calculate the 1-stem. Truncating to one column calculates the 1-stem on S*,
and we see (again) that this is zero, as there is nothing in the p+¢ = 1 diagonal. Truncating to two
columns, we obtain a copy of Z. Truncating at three columns, we allow an additional differential,
which kills 2Z C Z. After this, no more differentials will ever be involved, and so the 1-stem is
stable.

Note also that the generator of m1(Q225?) maps to ¢ € 71(22S3) under h. Thus it is a Hopf
invariant one element on S2, commonly denoted 7. Moreover, 71(2353) is generated by en.
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As we have calculated the 1-stem on S% and all higher spheres, we can fill in Ell,1 and E%J. Then
two more differentials are possible between groups that we have written down.

Firstly, a is zero. To see this, we note that p(e®n) = ws o (en), where wy € 73(S5?) and
en € 14(S%). Now we have calculated the 1-stem on S? to be Z, generated by the Hopf invariant
one element, 7. As wy has Hopf invariant two, we = 2n. Thus:

p(e’n) = (2n) o (en) = n o (2s) o (en) = n o (en) o (2ta) =: 2(n © (en)).

So d1(e3n) := h(p(e3n)) = 2h(n o (en)), and as the target is Zy, this is zero.
Note that there is a subtlety in the above, at the symbol =. We can only make this manipulation
since en is a suspension. I’ll write this up later.
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To see that the differential b vanishes, recall that there is an element v of Hopf invariant one in
73(Q45%), so that h(v) = ¢ € m3(wsS”). In particular, p : m3(wsST) — m2(w3S?) is zero, so that

no nonzero differentials ever leave E§ 0
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With all of the differentials involving the p + ¢ = 2 diagonal calculated, we can read off the 2-stem.
Knowledge of the 2-stem allows us to fill in the row Eig» and we write in two groups soon to be
of interest. We also write in another group of interest in the 1-stem, and add in all the possible
nonzero differentials between groups we can see.
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In order to see that these three differentials all vanish, we cheat a little, assuming that we know
that the stable 3-stem is Zg. Given that information, none of these three differentials could be
nonzero, as if they were, the cardinality of the stable 3-stem would have to be strictly less than 8.

The extension problems can all be solved easily given that we are aiming at Zg, so we can
calculate the whole 3-stem.



