

We know that the 0-stem is \mathbb{Z} on any sphere S^n with n > 1, by the Hurewicz theorem. We know the homotopy groups of S^1 , by covering space theory.

To calculate the differential $E_{p,0}^1 \longrightarrow E_{p-1,0}^1$, we take the element $\iota \in \pi_p(\Omega^{p+1}S^{2p+1})$, apply p, to obtain $p(\iota) = w_p \in \pi_{p-1}(\Omega^p S^p)$, and then apply h, to obtain $h(w_p) \in \pi_{p-1}(\Omega^p S^{2p-1})$. The Hopf invariant of the whitehead square w_p is two when p is even and zero when p is odd.

Now we are able to calculate the 1-stem. Truncating to one column calculates the 1-stem on S^1 , and we see (again) that this is zero, as there is nothing in the p+q=1 diagonal. Truncating to two columns, we obtain a copy of \mathbb{Z} . Truncating at three columns, we allow an additional differential, which kills $2\mathbb{Z} \subset \mathbb{Z}$. After this, no more differentials will ever be involved, and so the 1-stem is stable.

Note also that the generator of $\pi_1(\Omega^2 S^2)$ maps to $\iota \in \pi_1(\Omega^2 S^3)$ under h. Thus it is a Hopf invariant one element on S^2 , commonly denoted η . Moreover, $\pi_1(\Omega^3 S^3)$ is generated by $e\eta$.

As we have calculated the 1-stem on S^3 and all higher spheres, we can fill in $E_{1,1}^1$ and $E_{2,1}^1$. Then two more differentials are possible between groups that we have written down.

Firstly, a is zero. To see this, we note that $p(e^3\eta) = w_2 \circ (e\eta)$, where $w_2 \in \pi_3(S^2)$ and $e\eta \in \pi_4(S^3)$. Now we have calculated the 1-stem on S^2 to be \mathbb{Z} , generated by the Hopf invariant one element, η . As w_2 has Hopf invariant two, $w_2 = 2\eta$. Thus:

$$p(e^{3}\eta) = (2\eta) \circ (e\eta) := \eta \circ (2\iota_{3}) \circ (e\eta) \stackrel{*}{=} \eta \circ (e\eta) \circ (2\iota_{4}) =: 2(\eta \circ (e\eta)).$$

So $d_1(e^3\eta) := h(p(e^3\eta)) = 2h(\eta \circ (e\eta))$, and as the target is \mathbb{Z}_2 , this is zero.

Note that there is a subtlety in the above, at the symbol $\stackrel{*}{=}$. We can only make this manipulation since $e\eta$ is a suspension. I'll write this up later.

To see that the differential b vanishes, recall that there is an element ν of Hopf invariant one in $\pi_3(\Omega^4 S^4)$, so that $h(\nu) = \iota \in \pi_3(\omega_4 S^7)$. In particular, $p : \pi_3(\omega_4 S^7) \longrightarrow \pi_2(\omega_3 S^3)$ is zero, so that no nonzero differentials ever leave $E_{3,0}^1$.

With all of the differentials involving the p + q = 2 diagonal calculated, we can read off the 2-stem. Knowledge of the 2-stem allows us to fill in the row $E_{*,2}^1$, and we write in two groups soon to be of interest. We also write in another group of interest in the 1-stem, and add in all the possible nonzero differentials between groups we can see.

In order to see that these three differentials all vanish, we cheat a little, assuming that we know that the stable 3-stem is \mathbb{Z}_8 . Given that information, none of these three differentials could be nonzero, as if they were, the cardinality of the stable 3-stem would have to be strictly less than 8.

The extension problems can all be solved easily given that we are aiming at \mathbb{Z}_8 , so we can calculate the whole 3-stem.