Hartshorne I.1 — Affine Varieties

⇝ A nonempty open subset of an irreducible space is irreducible and dense.
⇝ The closure of an irreducible subspace is irreducible.
⇝ For $a \subset A$, $I(Z(a)) = \sqrt{a}$, by the Nullstellensatz. $Z(I(Y)) = \overline{Y}$.
⇝ Closed sets correspond to radical ideals. A closed set is irreducible iff it corresponds to a prime ideal. (A topological space is irreducible if it is not the union of two proper closed subsets).
⇝ Affine varieties correspond to finitely generated k-algebras which are domains.
⇝ In a noetherian topological space, closed sets are uniquely finite unions of irreducible ones.
⇝ The dimension of a space is one less than the length of the longest chain of distinct irreducible closed subsets. This coincides with the dimension of the coordinate ring.
⇝ Theorem 1.8A: For k a field, B a f.g. k-algebra which is a domain:
 • $\dim(B)$ is the transcendence degree of $K(B)/k$.
 • $\text{height } p + \dim B/p = \dim B$.
⇝ Theorem 1.11A: (Hauptidealsatz) Let A be noetherian, and $f \in A$ be neither zero divisor nor unit. Then if \mathcal{I} is the set of prime ideals containing f, any minimal ideal in \mathcal{I} in fact has height one.
 Interpretation if A is a UFD — $Z(f)$ can be written uniquely as a union of hypersurfaces $Z(f_i)$. Any maximal closed irreducible subset of $Z(f)$ has codimension one in Spec A — the only larger irreducible is all of A.
⇝ Proposition 1.12A: A noetherian domain A is a UFD iff every prime ideal of height one is principal.
 Interpretation — a noetherian domain A is a UFD iff every maximal proper closed irreducible subset of Spec A is a hypersurface, the zero set of one element.
⇝ A variety $Y \subset A^n$ has dimension $n - 1$ iff it is a hypersurface: $Z(f)$ for some nonconstant irreducible f. The same holds for a projective variety in \mathbb{P}^n of dimension $n - 1$.

Hartshorne I.2 — Projective Varieties

⇝ To talk about \mathbb{P}^n, introduce graded ring $S = k[x_0, \ldots, x_n]$, zero sets of homogeneous polynomials, and of homogeneous ideals.
⇝ Constructed homeomorphism $U_i \rightarrow \mathbb{A}^n$. Note that if Y is a (quasi)-projective variety, it is covered by the (quasi)-affine varieties $Y \cap U_i$.
⇝ Closed subsets of \mathbb{P}^n correspond to homogeneous radical ideals of S not equal to S_+, the irrelevant maximal ideal.
⇝ Given a variety $Y \subset A^n$, the closure \overline{Y} of Y in \mathbb{P}^n is called the projective closure. Its ideal is generated by $\beta(I(Y))$, where $\beta : A \rightarrow S$ maps x_i to x_i/x_0.
⇝ Have d-uple embedding $\mathbb{P}^n \rightarrow \mathbb{P}^N$ sending $[x_0 : \cdots : x_n]$ to all the degree d monomials. The image of the 2-uple embedding $\mathbb{P}^2 \rightarrow \mathbb{P}^5$ is called the Veronese surface. The image of the 3-uple embedding of \mathbb{P}^1 in \mathbb{P}^3 is the twisted cubic curve.
⇝ Have the Segre embedding $\mathbb{P}^r \times \mathbb{P}^s \rightarrow \mathbb{P}^{rs+r+s}$. The quadric surface in \mathbb{P}^3, defined by $xy = zw$, is the Segre embedding $\mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^3$.

1
Hartshorne I.3 — Morphisms

⇝ A function \(f : Y \rightarrow k \) is regular if it is locally a quotient of (homogeneous in projective case) polynomials of the same degree with nonvanishing denominator. A regular function is continuous.

⇝ A morphism of varieties is a continuous map \(f : X \rightarrow Y \) such that if \(\varphi : V \rightarrow k \) is a regular function for open \(V \subset Y \), then \(\varphi \circ f \) is regular of \(f^{-1}(V) \). That is, \(f \) must map the sheaf \(\mathcal{O}_Y \) of regular functions on \(Y \) into \(\mathcal{O}_X \) (as subsheaves of the sheaves of discontinuous functions).

⇝ For \(p \in Y \), have the local ring \(\mathcal{O}_{p,Y} \), the stalk of \(\mathcal{O}_Y \) at \(p \). The function field is the local ring at the generic point — here we should define it to be the direct limit of the \(\mathcal{O}_Y(U) \) over all nonempty open subsets \(U \) of \(Y \). Elements of the function field are called rational functions. Note that by restriction, we have injections \(\mathcal{O}_Y(Y) \rightarrow \mathcal{O}_{p,Y} \rightarrow K(Y) \).

⇝ Note that the function field of a product is the quotient field of the tensor product of the function fields.

⇝ **Theorem 3.2:** For \(Y \) affine, \(\mathcal{O}_Y(Y) = A(Y) \). \(\mathcal{O}_{p,Y} \cong A(Y)_{m_p} \), and \(\dim \mathcal{O}_{p,Y} = \dim Y \). \(p \mapsto m_p \) gives a bijection between points of \(Y \) and maximal ideals of \(A(Y) \). Finally, \(K(Y) \cong A(Y)_{(0)} \), so that \(K(Y) \) is a finitely generated extension of \(k \), of transcendence degree \(\dim Y \).

⇝ **Theorem 3.4:** For \(Y \) projective, \(\mathcal{O}_Y(Y) = k \), \(\mathcal{O}_{p,Y} = S(Y)_{(m_p)} \), and \(K(Y) = S(Y)_{(0)} \). Here we are using degree zero localizations.

⇝ **Proposition 3.5:** There is a natural isomorphism, for varieties \(X \) and affine varieties \(Y \), \(\text{Hom}(X,Y) \cong \text{Hom}(A(Y),\mathcal{O}(X)) \). In fact, if \(V \) is the category of varieties over \(k \), and \(D \) is the category of finitely generated integral domains over \(k \), there is a contravariant adjunction \(\mathcal{O} : V \leftrightarrow D^{\text{op}} : \text{Spec} \), which induces an isomorphism of categories between \(D^{\text{op}} \) and the full subcategory of \(V \) consisting of affine varieties.

Hartshorne I.4 — Rational Maps

⇝ Morphisms which agree on a nonempty open subset of a variety are equal.

⇝ A rational map \(X \rightarrow Y \) is an equivalence class of morphisms defined on a nonempty open subset of \(X \). A rational map is dominant if its image is dense (i.e. for some (equivalently any) choice of open subset). A birational map is a rational map with an inverse as rational maps. A variety is simply rational if it is birational to a projective space.

⇝ The complement of a hypersurface \(Z(f) \subset \mathbb{A}^n \) is a hypersurface \(Z(x_{n+1}f) \subset \mathbb{A}^{n+1} \) with coordinate ring \(k[x_1, \ldots, x_n]_f \).

⇝ A variety has a base for its topology consisting of open affine subsets.

⇝ **Theorem 4.4:** A dominant rational map induces a map of function fields, and the resulting correspondence is bijective, giving an contravariant equivalence of categories from “varieties with DRMs” to “finitely generated field extensions of \(k \)”.

⇝ **Corollary 4.5:** Varieties are birational iff they have isomorphic open subsets iff they have isomorphic function fields.

⇝ The blowup is defined — to blow up \(0 \in Y \subset A^n \), use composite \(\varphi : X \rightarrow \mathbb{A}^n \times \mathbb{P}^n \rightarrow \mathbb{A}^n \), where \(X \) is defined by equations \(x_iy_j = x_jy_i \). Take \(Y = \varphi^{-1}(Y - 0) \).

⇝ Rational functions and more generally rational maps have a maximum domain of definition.

⇝ If \(p \in X \) and \(q \in Y \) are such that \(\mathcal{O}_{p,X} \) and \(\mathcal{O}_{q,Y} \) are isomorphic \(k \)-algebras, then there is a
Hartshorne I.5 — Nonsingular Varieties

⇝ If \(Y \in \mathbb{A}^n \) is an affine variety with ideal generated by \(f_1, \ldots, f_t \), then \(Y \) is nonsingular at \(p \in Y \) if the rank of the Jacobian \(\| (\partial f_i/\partial x_j)(p) \| \) is \(n - \dim Y \). (It may be lower).
⇝ If \(A \) is a noetherian local ring, we say \(A \) is a regular local ring if \(\dim_{A/m} m/m^2 = \dim A \). Note that \(\geq \) holds always.
⇝ Theorem 5.1: \(Y \in \mathbb{A}^n \) is nonsingular at \(p \) iff \(\mathcal{O}_{p,Y} \) is a regular local ring. Thus the notion of nonsingularity is intrinsic and extends to all varieties.
⇝ Theorem 5.3: For any variety \(Y \), the set \(\text{Sing} \ Y \) of singular points is a proper closed subset.
⇝ To study very local behaviour, we take completions. The completion of a local ring \((A, \mathfrak{m}) \) is \(\hat{A} := \varprojlim A/m^n = \varprojlim \{ \cdots \to A/m^3 \to A/m^2 \to A/m \} \).
⇝ Theorem 5.4A: Suppose \(A \) is noetherian. \(\hat{A} \) is local with maximal ideal \(\mathfrak{m} \hat{A} \), and \(A \to \hat{A} \) is injective. For finitely generated \(A \)-modules \(M \), \(M \otimes_A \hat{A} \) is the \(\mathfrak{m} \)-adic completion of \(M \).
⇝ Theorem 5.5A: (Cohen Structure Theorem) The only complete regular local ring of dimension \(n \) containing a field \(k \) is the power series ring in \(n \) variables over \(k \). In particular, any two nonsingular points of the same dimension are analytically isomorphic.
⇝ Theorem 5.7A: (elimination theory) Given homog. polynomials \(f_1, \ldots, f_r \in k[x_0, \ldots, x_n] \) with indeterminate coefficients \(a_{ij} \), we want to know when they have a common root other than \((0,0,\ldots,0) \). There a polynomials \(g_1, \ldots, g_t \in \mathbb{Z}[a_{ij}] \), homogeneous in the coefficients of each \(f_i \) separately, such that there is a common nonzero root for the \(f_i \) iff there is a common root for the \(g_i \).
⇝ Exercise 5.4: We define the intersection multiplicity at \(P \in \mathbb{A}^2 \) of the curves \(C_1 \) and \(C_2 \) defined by \(f,g \in k[x,y] \) to be the length of the \(\mathcal{O}_P \)-module \(\mathcal{O}_P/(f,g) \). This makes sense, for we are pulling back:

\[
\begin{array}{ccc}
C_1 \cap C_2 & \longrightarrow & C_2 \\
\downarrow & & \downarrow \\
C_1 & \longrightarrow & \mathbb{A}^2
\end{array}
\]

We have a closed immersion \(C_1 \cap C_2 \hookrightarrow \mathbb{A}^2 \), and the length of the \(\mathcal{O}_P \)-module \(\mathcal{O}_{C_1 \cap C_2,P} \) measures the multiplicity at \(P \). However, \(\mathcal{O}_{C_1 \cap C_2,P} = \mathcal{O}_{C_1,P} \otimes_{\mathcal{O}_P} \mathcal{O}_{C_2,P} \), and \(\mathcal{O}_{C_1,P} = \mathcal{O}_P/f \), so that \(\mathcal{O}_{C_1 \cap C_2,P} = \mathcal{O}_P/(f,g) \) as desired.

In higher dimensions, this is not the correct formula for the intersection multiplicity — there are some derived functors which get involved. Maybe the intersection itself should really get ‘derived’.
Hartshorne I.6 — Nonsingular Curves

There is a unique nonsingular projective curve in each birational equivalence class of curves.

For each finitely generated field extension K/k of transcendence degree one, there is then a unique nonsingular projective curve C_K with function field K.

Moreover, and homomorphism $K_2 \rightarrow K_1$ over k is represented by a morphism $C_{K_1} \rightarrow C_{K_2}$.

Let K be a field and G be a totally ordered abelian group. A valuation on K with values in G is homomorphism $v : K^\times \rightarrow G$ such that for all nonzero x, y: $v(x + y) \geq \min\{v(x), v(y)\}$.

The valuation ring of v is then $\{0\} \cup v^{-1}(\geq 0)$, a local ring whose units are $\ker v$. The valuation ring always has quotient field K. Call v a valuation of K/k if $v(k^\times) = \{0\}$.

If A, B are local rings in a field K, then B dominates A if $A \subseteq B$ and $m_B \cap A = m_A$.

Theorem 6.1A: A local ring R contained in a field K is a valuation ring of K iff it is a maximal local ring w.r.t. domination. Every local ring inside K is dominated by some valuation ring of K.

Theorem 6.2A: Let A be a noetherian local domain of dimension one. TFAE:

1. A is a discrete valuation ring (i.e. comes from a valuation with values in \mathbb{Z});
2. A is integrally closed (i.e. normal);
3. A is a regular local ring (implies 2, even in higher dimensions);
4. The maximal ideal of A is principal.
5. A is a UFD (see next point).

Note that is always the case that a regular local ring is normal. In fact:

$$\text{Regular local ring} \implies \text{UFD} \implies \text{normal/integrally closed}$$

Note that being a UFD is a natural demand for smoothness — an obvious example of local failure to be factorial arises at the origin of the cone $xy = z^2$. Note that this example is normal!

A Dedekind domain is an integrally closed noetherian domain of dimension one. As being integrally closed is a local property, every localization of a Dedekind domain is a DVR.

For K/k a finitely generated extension of transcendence degree one, let C_K be the set of all discrete valuation rings of K/k.

Given a point y on a nonsingular curve Y with function field K, there’s an injective function $Y \rightarrow C_K$ given by $p \mapsto \mathcal{O}_p \in C_K$.

Theorem 6.5: For any $x \in K$, all but finitely map $R \in C_K$ contain x.

Interpretation — $x \notin R$ means that x will have a pole at R (as an element of the ‘curve’ C_K). As K is one dimensional, each x has only finitely many poles.

Corollary 6.6: Any DVR of K/k is the local ring of a point on a nonsingular affine curve.

Make C_K a topological space using the cofinite topology. If $U \subseteq C_K$ is open, define $\mathcal{O}(U) := \cap_{P \subseteq U} R_P$. An element $f \in \mathcal{O}(U)$ defines a function $U \rightarrow k$ by taking P to the image of f in the residue field of \mathcal{O}_P, which must be k by 6.6.

$f \in \mathcal{O}(U)$ can be recovered from its function $U \rightarrow k$, as if $0 \neq f \mapsto 0$, $f \in \mathfrak{m}_p$ for all p, so $f^{-1} \notin R_p$ for all p, contradicting 6.5, as there must be infinitely many R_p by 6.6. By 6.5, any $f \in K$ is a regular function on some open U. Thus the quotient field of C_K is K.

An abstract nonsingular curve is an open subset of C_K with the induced topology and sheaf of regular functions. A morphism of such is a continuous map such that regular functions
Proposition 6.7: Every nonsingular quasi-projective curve is isomorphic to an abstract nonsingular curve.

Theorem 6.9: \(C_K\) is isomorphic to a nonsingular projective curve.

Corollary 6.10: Every abstract nonsingular curve is isomorphic to a quasi-projective curve. Every nonsingular quasi-projective curve is isomorphic to an open subset of a nonsingular projective curve.

Corollary 6.11: Every curve is birationally equivalent to a nonsingular projective curve.

Corollary 6.12: The following categories are equivalent:

(i) Nonsingular projective curves and dominant morphisms;
(ii) Quasi-projective curves and dominant rational maps;
(iii) Function fields of dimension 1 over \(k\) and \(k\)-homomorphisms.

Proposition 6.8: Let \(X\) be a nonsingular curve, \(p \in X\), let \(Y\) be a projective variety, and let \(\varphi: X \setminus \{p\} \to Y\) be a morphism. Then there is a unique extension of \(\varphi\) to a morphism \(X \to Y\). (This fails if \(Y\) is not projective, or if \(\dim X > 1\).)

Using proposition 6.8, one can show that every automorphism of \(\mathbb{P}^1\) is in \(\text{PGL}(1)\).

Hartshorne I.7 — Intersections in Projective Space

Hartshorne II.1 — Sheaves

A presheaf on \(X\) is a contravariant functor from the category of open subsets of \(X\) to abelian groups. There is some contention (Bjorn) as to whether to require \(\emptyset \mapsto 0\). It’s a sheaf if:

3. If \(U\) is open with open cover \(\{V_i\}\), and \(s \in \mathcal{F}(U)\) has \(s|_{V_i} = 0\) for all \(i\), then \(s = 0\).
4. If \(s_i \in \mathcal{F}(V_i)\) agree on overlaps, then they glue (uniquely).

Any subpresheaf of a sheaf has (3). Any presheaf maps to the sheaf of its discontinuous sections, and the kernel of this map consists of sections which violate (3).

A morphism of sheaves is an isomorphism iff it is an isomorphism on the stalks.

The presheaf kernel, cokernel and image are exactly as one would hope.

Given a presheaf \(\mathcal{F}\) there is a universal morphism \(\mathcal{F} \to \mathcal{F}^+\) into a sheaf \(\mathcal{F}^+\) called the sheafification. \(\mathcal{F}\) and \(\mathcal{F}^+\) have the same stalks. The sections of \(\mathcal{F}^+(U)\) can be viewed as sections of \(\bigcup_{p \in U} \mathcal{F}_p \downarrow U\) which are locally induced by sections of \(\mathcal{F}\). If \(\mathcal{F}\) is a sub-presheaf of a sheaf \(\mathcal{G}\), then its sheafification is the intersection of all subsheaves of \(\mathcal{G}\) containing \(\mathcal{F}\).

Given a morphism of sheaves \(\mathcal{F} \to \mathcal{I}\), the kernel is a sheaf. The image need not be a sheaf, so we define the sheaf image to be the smallest subsheaf of \(\mathcal{I}\) containing the presheaf image of \(\mathcal{F}\). We are thus already equipped to discuss exact sequences of sheaves, by demanding that kernel equals sheaf image.

If \(\mathcal{F}' \subset \mathcal{F}\) is an inclusion of sheaves, the quotient sheaf \(\mathcal{F}/\mathcal{F}'\) is defined to be the sheafification of the quotient presheaf. The quotient presheaf has (3) but not (4), as if \([f_i] \in \mathcal{F}(V_i)/\mathcal{F}'(V_i)\) agree on \(V_i \cap V_j\), this only means that they \(f_i - f_j \in \mathcal{F}'(V_i \cap V_j)\), and this element may not extend to \(\mathcal{F}'(V_i \cup V_j)\).

Sections of \((\mathcal{F}/\mathcal{F}')(U)\) are equivalence classes of collections of sections of the presheaf on coverings of \(U\) which agree on overlaps.
A sequence of sheaves is exact iff it is exact on the stalks.

Constructing new sheaves from old, given \(f : X \to Y \):

- **direct image**: \(f_* : \text{Shf}_X \to \text{Shf}_Y \), \((f_*F)(V) := F(f^{-1}(V)) \).
- **inverse image**: \(f^* : \text{Shf}_Y \to \text{Shf}_X \), \((f^*G)(U) := \lim_{V \supseteq f(U)} G(V) \).

If \(f \) is the inclusion of a subspace, we call \(f^{-1}G \) the restriction of \(G \) to \(X \), denoted \(G|_X \).

Note that there are maps \(f^{-1}f_*F \to F \) and \(G \to f_*f^{-1}G \) which are easy to write down, and are the counit and unit of an adjunction \(f^{-1} : \text{Shf}_Y \to \text{Shf}_X : f_* \).

Given an inverse system of sheaves on \(X \), the inverse limit presheaf is in fact a sheaf, and is the inverse limit in the category of sheaves on \(X \).

extension by zero: Let \(i : Z \to X \) be the inclusion of a closed subset, and \(j : U \to X \) be the inclusion of its complement.

- **from sheaf on closed subset**: Suppose \(F \) is a sheaf on \(Z \). Then its extension by zero is simply \(i_*F \).
- **from sheaf on open subset**: Suppose \(F \) is a sheaf on \(U \). Then its extension by zero is the sheafification \(j_*F \) of \(j^{-1}F \in \text{PreShf}_X \), where \(j^{-1}F(V) := \begin{cases} \{ F(V) \}, & V \subseteq U \\ 0, & \text{ otherwise}. \end{cases} \)

The stalks on \(U \) are unchanged, and are zero on \(Z \). \(j^{-1}F \) satisfies (3) and so embeds in its discontinuous sections, which are identified with the discontinuous sections of \(F \). The sheafification consists of sections of \(F \) whose support (as a subset of \(U \)) has closure in \(X \) not intersecting \(Z \). In this sense, there are fewer sections of \(j_*F \) than of \(F \).

sheaf Hom: Given \(F, G \in \text{Shf}_X \), define \(\text{Hom}(F, G) \in \text{Shf}_X \) by \(U \mapsto \text{Hom}(F|_U, G|_U) \).

The functor \(\Gamma(U, -) \) is left exact from \(\text{Shf}_X \to \text{AbGp} \). It is exact on short exact sequences where the kernel is flasque.

The support of a section of a sheaf is the set of points at which it is nonzero in the stalk. This is a closed set!

Hartshorne II.2 — Schemes

Define \(\text{Spec} \, A \) to be the set of prime ideals of \(A \). For \(\mathfrak{a} \subseteq A \) any ideal, let \(V(\mathfrak{a}) \) be the set of prime ideals which contain \(\mathfrak{a} \). These sets are the closed subsets of \(\text{Spec} \, A \). Note that \(V(\mathfrak{a}) \subseteq V(\mathfrak{b}) \) iff \(\sqrt{\mathfrak{a}} \subseteq \sqrt{\mathfrak{b}} \). Note that \(\mathfrak{p} \in V(f) \) iff \(f \) vanishes at \(\mathfrak{p} \), that is, \(f \) maps to zero in the residue field \(A_\mathfrak{p}/\mathfrak{p}A_\mathfrak{p} \cong (A/\mathfrak{p})_{(0)} \) at \(\mathfrak{p} \).

Define a sheaf \(\mathcal{O} \) on \(\text{Spec} \, A \) by assigning \(\mathfrak{p} \) the stalk \(A_\mathfrak{p} \), and requiring that a section be locally a quotient of elements of \(A \). Together, this data is the spectrum of \(A \).

Proposition 2.2: Let \(D(f) \) be the complement of \(V(f) \). Then the ring \(\mathcal{O}(D(f)) \) is isomorphic to \(A_f \). In particular, \(\Gamma(\mathcal{O}) \cong A \).

A ringed space is a pair \((X, \mathcal{O}_X)\) of a space and a sheaf of rings. A morphism of ringed spaces is a pair \((f, f^\#)\) of a map \(f : X \to Y \) and a map \(f^\# : \mathcal{O}_Y \to f_*\mathcal{O}_X \). A locally ringed space is a ringed space wherein the stalks are all local rings. A morphism of locally ringed spaces is a morphism of ringed spaces where the maps on stalks are local (i.e. the preimage of the maximal ideal is the maximal ideal).

Proposition 2.3: Each spectrum is a locally ringed space, and there is a natural bijective
correspondence between homomorphisms $A \rightarrow B$ and morphisms $\text{Spec} \, B \rightarrow \text{Spec} \, A$ of locally ringed spaces.

\Rightarrow An affine scheme is any ringed space isomorphic to the spectrum of a ring. A scheme is a locally ringed space with an open cover of affine schemes.

\Rightarrow Suppose S is a graded ring. Let $\text{Proj} \, S$ be the set of all homogeneous prime ideals which do not contain all of S_+. If a is a homogeneous ideal of S, let $V(a)$ be the set of elements of $\text{Proj} \, S$ which contain a. The $V(a)$ are the closed sets.

Define a sheaf O on $\text{Proj} \, S$ by assigning p the stalk $S_{(p)}$, the degree zero localization, and requiring that a section be locally a quotient of homogeneous elements of S of the same degree.

\Rightarrow Proposition 2.5: Let $D_+(f)$ be the complement of $V(f)$ for any homogeneous f. Then the ringed space $(D_+(f), O(D_+(f)))$ is isomorphic to $\text{Spec} \, A(f)$, so that $\text{Proj} \, S$ is a scheme.

\Rightarrow Proposition 2.6: Let k be an algebraically closed field. There is a natural fully faithful functor $\text{Var} \, (k) \rightarrow \text{Sch} \, (k)$. For any variety V, its topological space is homeomorphic to the subspace of closed points of $t(V)$, and its sheaf of regular functions is obtained by restricting the structure sheaf of $t(V)$.

Proposition 4.10: The image of t is exactly the set of quasi-projective integral schemes over k. The image of the set of projective varieties is the set of integral projective schemes. If V is a projective variety with homogeneous coordinate ring S, then $t(V) \cong \text{Proj} \, S$.

\Rightarrow A scheme is reduced if $O_X(U)$ has no nilpotent elements for every open subset U, or equivalently if $O_{X,P}$ has no nilpotent elements for every $P \in X$.

Interpretation of being reduced — we need only interpret this on an affine scheme. Suppose that $n \in R$ is a nilpotent. Then as $n \in \sqrt{0} = \bigcap p$, the global section n of $O_{\text{Spec} \, R}$ maps to zero in the residue field at every point p. Thus the nilpotents are exactly the global sections which are zero when viewed as a function from $\text{Spec} \, R$ to its residue fields.

Given a scheme X, there is a universal reduced scheme X_{red} mapping to X. The map is a homeomorphism on spaces.

\Rightarrow The functor Spec is right adjoint to global sections, $\Gamma : \text{Sch} \leftrightarrow \text{Rings}^{\text{op}} : \text{Spec}$, i.e.:

$$
\text{Hom}_{\text{Sch}}(X, \text{Spec} \, A) \cong \text{Hom}_{\text{Rings}}(A, \Gamma(O_X)).
$$

In particular $\text{Spec} \, Z$ is terminal in Sch.

\Rightarrow To give a map $\text{Spec} \, K \rightarrow X$, it is equivalent to choose a point of x and specify an inclusion $k(x) \rightarrow K$, the residue field O_x/m_x at x.

\Rightarrow For $x \in X$, define the Zariski tangent space at x to be the $k(x)$-vector space T_x dual to m_x/m_x^2. Let $D = k[e]/e^2$ be the ring of dual numbers over k. If X is a scheme over k, then to give a k-morphism $\text{Spec} \, D \rightarrow X$ is to give a point $x \in X$ rational over k (i.e. $k(x) = k$), and an element of T_x. In particular, rational points map to rational points under k-maps.

\Rightarrow Every non-empty irreducible closed subset Z of X has a unique generic point, a point ζ such that $\{\zeta\} = Z$.

\Rightarrow A scheme is called quasi-compact if its underlying topological space is so. Any affine scheme is quasi-compact.

\Rightarrow A space is noetherian iff all of its closed subsets are quasi-compact. The spectrum of a noetherian ring is a noetherian topological space.

\Rightarrow $\text{Proj} \, S$ is empty iff $\text{Rad}(S) \supseteq S_+$. Given a map $\varphi : S \rightarrow T$ of graded rings, we only get a map $f : U \rightarrow \text{Proj} \, S$, where U is the set of homogeneous prime ideals in $\text{Proj} \, T$ whose
preimage is not all of S_+. f only depends on the φ_d for $d \gg 0$, so can be an isomorphism even if φ is not.

\rightsquigarrow Suppose $\varphi : A \to B$ corresponds to $f : Y = \text{Spec} B \to \text{Spec} A = X$. Then:

- φ is injective iff $f^* : \mathcal{O}_X \to f_* \mathcal{O}_Y$ is injective, in which case f is dominant.
- φ is surjective iff f is a homeomorphism onto a closed subset and f^* is surjective.

Hartshorne II.3 — First Properties of Schemes

\rightsquigarrow A scheme X is:

- **connected:** if its topological space is connected.
- **reduced:** if none of the rings $\mathcal{O}_X(U)$ (equiv. $\mathcal{O}_{X,p}$) have nilpotent elements.
- **integral:** if $\mathcal{O}_X(U)$ is a domain for all open $U \subseteq X$.
 - iff it is reduced and irreducible.

- **locally noeth.:** if it can be covered by open affine $\text{Spec} A_i$ with A_i noetherian rings.
 - (a local property) iff whenever $\text{Spec} A$ is an open subscheme of X, A is noetherian (3.2)
- **noetherian:** if it is locally noetherian and quasi-compact.

\rightsquigarrow A morphism $X \to Y$ of schemes is:

- **locally of finite type:** if Y can be covered by open affine $V_i = \text{Spec} B_i$ such that each $f^{-1}(V_i)$ can be covered by $\text{Spec} A_{ij}$ making A_{ij} a finitely generated B_i-algebra.
- **of finite type:** if only finitely many A_{ij} are required for each i in the previous.
 - \iff locally of finite type and quasi-compact.
- **quasi-compact:** if Y can be covered with open affines each with compact preimage.
- **finite:** if Y can be covered by open affine $V_i = \text{Spec} B_i$ such that each $f^{-1}(V_i)$ is affine equal to $\text{Spec} A_i$, making A_i a finitely generated B_i-module.
 - \implies proper; closed, and quasi-compact, separated (and affine).
- **affine:** if Y can be covered by open affine $V_i = \text{Spec} B_i$ with $f^{-1}(V_i)$ affine.
 - \implies quasi-compact and separated.
- **separated:** if $\Delta : X \to X \times_Y X$ is a closed immersion.
- **univ. closed:** if any base extension $f' : X' \to Y'$ is closed.
- **proper:** if it is separated, of finite type and universally closed.

All of these properties are local on the base — the requirements end up satisfied for any open cover V_i.

\rightsquigarrow An open immersion is simply the inclusion of an open subscheme.

\rightsquigarrow A closed immersion is a morphism $f : Y \to X$ such that f is a homeomorphism onto a closed subset of X, and $f^* : \mathcal{O}_X \to f_* \mathcal{O}_Y$ is surjective. Note that the surjectivity condition simply says that any function on Y should lift to a function on X locally.

A closed subscheme of a scheme X is an equivalence class of closed immersions, where closed immersions $f_i : Y_i \to X$ are equivalent if there is an isomorphism $Y_1 \to Y_2$ making the triangle commute.

For X affine, the closed subsets are the $V(\mathfrak{a})$. There is a different closed subscheme structure on $V(\mathfrak{a})$ for each \mathfrak{a}' with $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{a}'}$. In fact, every closed subscheme arises in this way.

\rightsquigarrow Given a scheme X and closed subset Y, there is a ‘smallest’ closed subscheme structure for Y, the reduced induced closed subscheme structure. We construct this when X is affine and glue. If $X = \text{Spec} A$ and $Y = V(\mathfrak{a})$, take $\text{Spec}(X/\sqrt{\mathfrak{a}}) \to \text{Spec} X$. (Note that $\sqrt{\mathfrak{a}}$ is the largest
ideal available, so there are no redundant functions in the structure. Allowing a function in $\sqrt{a} \setminus a$ allows a nilpotent section.)

\rightsquigarrow There is a fibre product $X \times_{S} Y$ of schemes. If $X = \text{Spec } A$, $Y = \text{Spec } B$, and $S = \text{Spec } R$, then $X \times_{S} Y$ is $\text{Spec } (A \otimes_{R} B)$.

\rightsquigarrow The fibre of $f : X \to Y$ over a point $y \in Y$ is $X_{y} := X \times_{Y} \text{Spec } k(y)$. Moreover, we have base extension $\text{Sch}_{S} \to \text{Sch}_{S'}$ whenever we have a morphism $S' \to S$. The following types of morphisms are stable under base extension (not exhaustive):

- those of finite type
- closed and open immersions
- separated and proper

\rightsquigarrow Integral schemes are very unstable under base extension — it is easy to give examples where irreducibility ($xy = t$) and reducedness ($ty = x^2$) are not preserved.

\rightsquigarrow Given a morphism $f : Z \to X$, there is a universal closed subscheme Y of X through which f factors, called the scheme theoretic image — if f also factors through Y', then $Y \to X$ factors as $Y \to Y' \to X$.

\rightsquigarrow Properties of morphisms of finite type:

1. if $f : X \to Y$ has finite type, $\text{Spec } B \subset Y$ and $\text{Spec } A \subset f^{-1}(\text{Spec } B)$ are open subsets, then A is always a finitely generated B-algebra.
2. A closed immersion is of finite type.
3. A quasi-compact open immersion is of finite type.
4. A composition of two morphisms of finite type is of finite type.
5. If X and Y have finite type over S, so does $X \times_{S} Y$.
6. If $X \to Y \to Z$ is of finite type, then $X \to Y$ is locally of finite type. (Use 1.)
7. If $X \to Y$ has finite type, and Y is noetherian, then X is noetherian.

\rightsquigarrow Noetherian induction: if a property \mathcal{P} of closed subsets of a noetherian space X holds for Z whenever it holds for all proper closed subsets of Z, then it holds for all closed subsets of X.

Hartshorne II.4 — Separated and Proper Morphisms

\rightsquigarrow A morphism $X \to Y$ is separated if $\Delta : X \to X \times_{Y} X$ is a closed immersion.

\rightsquigarrow Any morphism of affine schemes is separated, as $A \otimes_{B} A \to A$ is surjective.

\rightsquigarrow It’s enough that $\text{im}(\Delta(X))$ is a closed subset of $X \times_{Y} X$.

(It’s all local on Y. Surjectivity on sheaves is local on X, so we can pretend X is affine to get a closed immersion. As $X \to X \times_{Y} X \to X$ is the identity, Δ is always a homeomorphism onto its image.)

\rightsquigarrow **Theorem 4.3:** (valuative criterion of separatedness) Let $f : X \to Y$ be any morphism where X is noetherian. Then f is separated iff the following condition holds. Suppose $R \to K$ is the inclusion of a valuation ring into its field of fractions. Then there is at most
one lifting (dotted) in any commuting diagram of the following form:

\[
\begin{array}{ccc}
(0) & \in & \text{Spec } K \\
\downarrow & & \downarrow \\
\xi & \in & \text{Spec } R
\end{array}
\xrightarrow{f}
\begin{array}{ccc}
& X \\
\downarrow & & \downarrow \\
& f
\end{array}
\xrightarrow{\downarrow}
\begin{array}{ccc}
& Y
\end{array}
\]

Interpretation — If a map to \(Y \) can be lifted to \(X \) at the generic point \(\xi \), as everything in \(\text{Spec } R \) is so close to \(\xi \), any extension of this lift to all of \(\text{Spec } R \) must be unique.

\[\sim\textbf{ Theorem 4.7:} \quad \text{(valuative criterion of properness)} \]
Let \(f : X \rightarrow Y \) be a morphism of finite type, where \(X \) is noetherian. Then \(f \) is proper iff there is exactly one lifting (dotted) in:

\[
\begin{array}{ccc}
(0) & \in & \text{Spec } K \\
\downarrow & & \downarrow \\
\xi & \in & \text{Spec } R
\end{array}
\xrightarrow{f}
\begin{array}{ccc}
& X \\
\downarrow & & \downarrow \\
& f
\end{array}
\xrightarrow{\downarrow}
\begin{array}{ccc}
& Y
\end{array}
\]

Interpretation — As before, except that as \(X \rightarrow Y \) is proper, a lift should exist.

Example (Exercise 4.1). A finite morphism is proper.\[^1\]

Proof. As properness is local on the base, we can check this for a map of affine schemes induced by a finite ring homomorphism \(B \rightarrow A \). Now there’s a correspondence between dashed arrow in the diagrams:

\[
\begin{array}{ccc}
\text{Spec } K & \longrightarrow & \text{Spec } A \\
\downarrow & & \downarrow \\
\text{Spec } R & \longrightarrow & \text{Spec } B
\end{array}
\xrightarrow{K \xleftarrow{a}}
\begin{array}{ccc}
A & \longrightarrow & \text{Spec } A \\
\downarrow & & \downarrow \\
B & \longrightarrow & \text{Spec } B
\end{array}
\]

As the left vertical is injective, we can assume that the right vertical in injective. Now \(R \alpha (A) \) is finite over \(R \), in particular it’s integral over \(R \), so that \(R \alpha (A) = R \), (as a valuation ring is integrally closed). This gives the dashed arrow.\[\Box\]

Example (Exercise 4.6). A proper morphism of affine varieties over a field is finite.

Proof. Suppose that the morphism is induced by a ring map \(B \rightarrow A \). Denote the epi-mono factorisation as in the diagram. Whenever \(A' \subset R \subset A_{(0)} \) for a valuation ring \(R \), we have the dashed arrows:

\[
\begin{array}{ccc}
A_{(0)} & \xleftarrow{\alpha} & A \\
\downarrow & & \downarrow \\
A' & \xleftarrow{\beta} & B
\end{array}
\]

By properness we obtain the dotted arrow, and thus \(A \subset R \). In particular, \(A \) is a subring of the integral closure \(\overline{A'} \) of \(A' \) in \(A_{(0)} \), and by finiteness of integral closure, \(\overline{A'} \) is finite over \(A' \). But \(A' \) is Noetherian, so that \(A \) is finite over \(A' \).\[\Box\]

\[^1\]We should just note that finite morphisms are closed under base extension, closed, separated and of finite type.
Theorem I.3.9A: (finiteness of integral closure) Suppose that A is an integral domain which is a finitely generated k-algebra. Let L be a finite algebraic extension of the quotient field $A(0)$. Then the integral closure of A in L is a finite A-module and finitely generated A-algebra:

\[
\begin{array}{c}
A \quad \longrightarrow \quad A_L \quad \hookrightarrow \quad L \\
\text{finite type} \quad \text{finite} \quad \text{finite algebraic}
\end{array}
\]

Corollaries 4.6 & 4.8: When everything is noetherian:

- Open and closed immersions are separated.
- Closed immersions are proper.
- A composition of (separated/proper) morphisms is (separated/proper)
- (Separated/proper) morphisms are stable under base extension.
- Products of (separated/proper) morphisms are (separated/proper):
 - If $X \rightarrow Y \rightarrow Z$ is separated, so is $X \rightarrow Y$.
 - If $X \rightarrow Y \rightarrow Z$ is proper, and $Y \rightarrow Z$ is separated, then $X \rightarrow Y$ is proper.
- Being (separated/proper) is local on the base. All of these statements remain true if you replace ‘proper’ with ‘projective’.

Define P^n_A to be $\text{Proj} \ A[x_0, \ldots, x_n]$ for any ring A. Given a map $A \rightarrow B$ of rings, using the corresponding map $\text{Spec} B \rightarrow \text{Spec} A$ we have $P^n_B \cong P^n_A \times_{\text{Spec} A} \text{Spec} B$. Thus we could define $P^n_A := P^n_Z \times \text{Spec} B$.

For any scheme Y, we define the projective n-space P^n_Y over Y, to be $P^n_Z \times Y$.

A map $X \rightarrow Y$ is called projective if it is essentially the restriction to a closed subscheme of P^n_Y of the map $P^n_Y \rightarrow Y$. (i.e. it factors as a closed immersion $X \rightarrow P^n_Y$ and then the projection.)

A map $X \rightarrow Y$ is called quasi-projective if it is essentially the restriction of $P^n_Y \rightarrow Y$ to an open subscheme of a closed subscheme of P^n_Y. (i.e. it factors as an open immersion into X' followed by a projective map $X' \rightarrow Y$.)

Theorem 4.9: Projective morphisms of noetherian schemes are proper. Quasi-projective morphisms of noetherian schemes are of finite type and separated.

A variety is an integral separated scheme of finite type over an algebraically closed field k. If it is proper over k, we call it complete.

Let X be reduced and let Y be separated (over some base S). If $f, g : X \rightarrow Y$ are S-morphisms which agree on an open dense subset of X, then $f = g$.

In a separated scheme over an affine scheme, the intersection of affine open subsets is affine. (To see this, use the following pullback to see that $U \cap V \rightarrow U \times V$ is a closed immersion, and note that $U \times V$ is affine when U, V and the base are affine.)

\[
\begin{array}{ccc}
U \cap V & \longrightarrow & X \\
\downarrow & & \downarrow \\
U \times V & \longrightarrow & X \times X
\end{array}
\]

A proper morphism of affine varieties over k is a finite morphism.
Hartshorne II.5 — Sheaves of Modules

A sheaf of \(\mathcal{O}_X \)-modules on a ringed space \(X \) is a sheaf \(\mathcal{F} \) on \(X \) such that \(\mathcal{F}(U) \) is an \(\mathcal{O}_X(U) \)-module for each open \(U \), compatibly with restrictions.

The category of \(\mathcal{O}_X \)-modules is closed under taking kernels, cokernels, images, quotients, direct limits, inverse limits, direct sums and products. There is a sheaf Hom for \(\mathcal{O}_X \)-modules, requiring no sheafification: \(\mathcal{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})(U) := \mathcal{Hom}_{\mathcal{O}_X(U)}(\mathcal{F}|_U, \mathcal{G}|_U) \).

The tensor product of \(\mathcal{O}_X \)-modules is the sheafification of \(U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U) \).

(I should think about whether the presheaf has (3).)

An \(\mathcal{O}_X \)-module \(\mathcal{F} \) is free if it is a direct sum of copies of \(\mathcal{O}_X \). It is locally free if \(\mathcal{F}|_U \) is a free \(\mathcal{O}_X|_U \)-module for some open \(U \) around any point of \(X \). The rank is well defined on each connected component. If it is locally free of rank one, it is called invertible.

A sheaf of ideals on \(X \) is a sheaf of modules \(\mathcal{I} \) which is a sub-\(\mathcal{O}_X \)-module of \(\mathcal{O}_X \). That is, \(\mathcal{I}(U) \) is an ideal of \(\mathcal{O}_X(U) \) for all open \(U \).

Constructing new sheaves of modules from old, given \((f, f^\#) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\):

- **direct image:** \(f_* : \mathcal{O}_X\text{-Mod} \to \mathcal{O}_Y\text{-Mod} \), using the following module structure:
 \[
 \mathcal{O}_Y \times f_* \mathcal{F} \to f_* \mathcal{O}_X \times f_* \mathcal{F} \to f_* \mathcal{F}.
 \]

- **inverse image:** \(f^* : \mathcal{O}_Y\text{-Mod} \to \mathcal{O}_X\text{-Mod} \):
 \[
 \mathcal{O}_X \in (f^{-1}\mathcal{O}_Y)\text{-Mod} \text{ (via } (f^{-1}\mathcal{O}_Y) \to \mathcal{O}_X), \text{ and } f^{-1}\mathcal{G} \in (f^{-1}\mathcal{O}_Y)\text{-Mod}. \text{ Define:}
 \]
 \[
 f^* \mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X.
 \]

There is an adjunction \(f^* : \mathcal{O}_Y\text{-Mod} \leftrightarrow \mathcal{O}_X\text{-Mod} : f_* \).

Given an \(M \in A\text{-Mod} \), we obtain \(\tilde{M} \in \mathcal{O}_X\text{-Mod} \), where \(X = \text{Spec } A \). Assign \(p \) the stalk \(M_p \), and require that a section be locally a quotient \(m/a \), for \(m \in M \) and \(a \in A \) non-vanishing.

Proposition 5.1: For any \(f \in A \), \(\tilde{M}(D(f)) \cong M_f \), and thus \(\Gamma(X, \tilde{M}) = M \).

Proposition 5.2: Let \(X = \text{Spec } A \). Then \(\tilde{M} \) gives an exact, fully faithful functor \(A\text{-Mod} \to \mathcal{O}_X\text{-Mod} \), preserving tensor products and direct sums. Moreover, for \(f : \text{Spec } B \to \text{Spec } A \), \(f_* \) and \(f^* \) correspond to the usual adjunction \(f_* : A\text{-Mod} \leftrightarrow B\text{-Mod} : f^* \).

A sheaf \(\mathcal{F} \) of \(\mathcal{O}_X \)-modules is quasi-coherent if \(X \) can be covered by open affine subsets \(\text{Spec } A_i \) such that \(\mathcal{F}|_{\text{Spec } A_i} \) is isomorphic to \(\tilde{M}_i \) for some \(M_i \in A_i\text{-Mod} \). It is coherent if the \(M_i \) can be taken to be finitely generated \(A_i \)-modules.

Proposition 5.4: An \(\mathcal{O}_X \)-module \(\mathcal{F} \) is quasi-coherent iff for every open affine \(U = \text{Spec } A \subset X \), \(\mathcal{F}|_U \cong \tilde{M} \) for some \(M \in A\text{-Mod} \). The corresponding test for coherence can be applied when \(X \) is noetherian.

Proposition 5.5: If \(X = \text{Spec } A \), \(M \mapsto \tilde{M} \) is an equivalence \(A\text{-Mod} \to \text{QCoh}_X \). As long as \(A \) is noetherian, it is also an equivalence \(A\text{-Mod}^{f.g.} \leftrightarrow \text{Coh}_X \).
Proposition 5.6: If $0 \rightarrow F' \rightarrow F \rightarrow F'' \rightarrow 0$ is an exact sequence of O_X-modules, where X is affine, then $0 \rightarrow \Gamma(F') \rightarrow \Gamma(F) \rightarrow \Gamma(F'') \rightarrow 0$ is exact whenever F is quasicoherent. (Note that in fact, $H^1(X, F') = 0$, when X is affine and $F \in \text{QCoh}_X$).

Proposition 5.7: QCoh_X is closed under taking kernels, cokernels, images and extensions. So if Coh_X when X is noetherian.

Proposition 5.8: Let $f : X \rightarrow Y$ be a morphism of schemes.

(a) If $F \in \text{QCoh}_Y$, then $f^*F \in \text{QCoh}_X$.
(b) If $F \in \text{Coh}_Y$, then $f^*F \in \text{Coh}_X$, assuming X and Y are both noetherian.
(c) Assume that either X is noetherian, or f is quasi-compact and separated. If $F \in \text{QCoh}_X$, then $f_*F \in \text{QCoh}_Y$. (Here, f could be proper, or finite.)

Exercise 5.5: If $f : X \rightarrow Y$ is a finite morphism of noetherian schemes, and $F \in \text{Coh}_X$, then $f_*F \in \text{Coh}_Y$. (Easy.)

If $i : Y \rightarrow X$ is a closed subscheme, the kernel of the map $O_X \rightarrow i_*O_Y$ is called the ideal sheaf \mathcal{I}_Y of Y. That is, \mathcal{I}_Y is the ideal of functions on X which vanish on Y.

By 5.7 and 5.8, \mathcal{I}_Y is always quasi-coherent, and coherent when X is noetherian.

Proposition 5.9: Any quasi-coherent sheaf of ideals F on X is the ideal sheaf of a uniquely determined closed subscheme of X. (In particular, closed subschemes of $\text{Spec} \ A$ correspond to ideals of A.)

Proof. Let $Y = \text{supp}(O_X/F)$, giving a ringed space $(Y, O_X/F)$. To check that this is a closed subscheme, we may assume $X = \text{Spec} \ A$. Then as F is quasi-coherent, $F = \widetilde{\mathcal{A}}$ for some ideal $\mathcal{A} \subseteq \mathcal{A}$. Then $O_X/F = \mathcal{A}/\mathcal{A} = (\mathcal{A}/\mathcal{A})$, which is simply $O_{\text{Spec} \ A/\mathcal{A}}$.

Suppose that S is a graded ring and M is a graded S-module. Then we can form a quasi-coherent sheaf \widetilde{M} of $O_{\text{Proj} \ S}$-modules by the standard construction, defining the stalk at p to be $M(p)$, the degree zero localisation of M, and requiring sections to be fractions locally.

Proposition 5.9: For homogeneous $f \in S_+$, we have $\widetilde{M}|_{D_+(f)} = \widetilde{M(f)}$, where we note that $D_+(f) \cong \text{Spec} \ S(f)$, and $M(f)$ is an $S(f)$-module. Of course \widetilde{M} is always quasi-coherent, and is coherent if S is noetherian and M is finitely generated.

Given a graded S-module M, we define the twisted module $M(n)$ by $M(n)_d := M_{n+d}$. If $X = \text{Proj} \ S$, we define $O_X(n) := \widetilde{S(n)}$. Serre’s twisting sheaf is $O_X(1)$. We twist other sheaves by tensoring them with this one, defining $F(n) := F \otimes O(n)$.

Proposition 5.12: Suppose that S and T are graded rings, such that $S(T)$ is generated by $S_1(T_1)$ as an S_0-algebra (T_0-algebra). Let $X = \text{Proj} \ S$ and $Y = \text{Proj} \ T$. Then:

- The sheaf $O_X(n)$ is invertible for all n.
- For any graded S-module M, $\widetilde{M(n)} \cong \widetilde{M(n)}$. Thus $O_X(n) \otimes O_X(m) = O_X(n + m)$.
- Suppose $S \xrightarrow{\varphi} T$ is a graded ring homomorphism, defining a map $X \xleftarrow{\psi} U \subseteq Y$. Then $(f, O_U(n)) \xleftarrow{\varphi} O_Y(U)(n)$ and $O_X(n) \xrightarrow{\psi} O_Y(n)|_U$.
- Suppose F is a sheaf of O_X-modules, where $X = \text{Proj} \ S$. The graded module associated to F is $\bigoplus \Gamma(X, F(n))$. This becomes a graded S-module, as any $s \in S_d$ can be viewed as an element of $\Gamma(X, O_X(d))$, and there is a map:

\[\Gamma(X, O_X(d)) \otimes \Gamma(X, F(n)) \rightarrow \Gamma(X, O_X(d) \otimes O_F(n)) = \Gamma(X, F(n + d)). \]
This is great, since proposition 5.15 states that if \(S \) is finitely generated by elements of \(S_1 \) as an \(S_0 \)-algebra, and \(\mathcal{F} \) is quasi-coherent, then \(\Gamma_*(\mathcal{F}) \cong \mathcal{F} \).

Proposition 5.13: If \(S = A[x_0, \ldots, x_n] \), so that \(X = \text{Proj} \, S = \mathbb{P}^n_A \), then \(\Gamma_*(\mathcal{O}_X) \cong S \).

Corollary 5.16: Let \(A \) be a ring.

- Every closed subscheme \(Y \) of \(\mathbb{P}^n_A \) arises from a homogeneous ideal of \(S = A[x_0, \ldots, x_n] \).
 (We noted above that closed subschemes correspond precisely to saturated ideals: \(\Gamma_*(\mathcal{I}_Y) \) is the saturated ideal.)

- A scheme over \(\text{Spec} \, A \) is projective iff it is \(\text{Proj} \, S \) for some graded ring \(S \) with \(S_0 = A \) and \(S \) finitely generated by \(S_1 \) as an \(A \)-algebra. (Almost by definition.)

To produce the ideal corresponding to \(Y \), note that \(\mathcal{I}_Y \subset \mathcal{O}_{\mathbb{P}^n_A} \), twisting is exact, and global sections is left exact, so that \(\Gamma_* (\mathcal{I}_Y) \subset \Gamma_* (\mathcal{O}_{\mathbb{P}^n_A}) = S \).

Corollary 5.18: If \(Y = \text{Spec} \, A \), then \(\mathcal{I}_Y \subset \mathcal{O}_{\mathbb{P}^n_A} \), twisting is exact, and global sections is left exact, so that \(\Gamma_* (\mathcal{I}_Y) \subset \Gamma_* (\mathcal{O}_{\mathbb{P}^n_A}) = S \).

Theorem 5.17: Let \(X = \text{Proj} \, S \) be a projective scheme over \(\text{Spec} \, A \), and let \(\mathcal{F} \) be a coherent \(\mathcal{O}_X \)-module. Then \(\mathcal{F}(n) \) is generated by global sections for \(n \geq 0 \). This yields the following:

Corollary 5.18: \(\mathcal{F} \) can be written as a quotient of a finite direct sum \(\bigoplus \mathcal{O}(n_i) \).

Theorem 5.19: Let \(k \) be a field, \(A \) a finitely generated \(k \)-algebra, \(X \) a projective scheme over \(A \), and \(\mathcal{F} \) a coherent \(\mathcal{O}_X \)-module. Then \(\Gamma(X, \mathcal{F}) \) is a finitely generated \(A \)-module.

In particular, if \(X \) is projective over \(k \), then \(\Gamma(X, \mathcal{F}) \) is finite dimensional for all \(\mathcal{F} \in \text{Coh}_X \). **Corollary 5.20:** Let \(f : X \to Y \) be a projective morphism, where \(X \) and \(Y \) are both of finite type over a field \(k \). Then \(f_* \mathcal{F} \in \text{Coh}_Y \) for any \(\mathcal{F} \in \text{Coh}_X \).

Proof. We may assume \(Y = \text{Spec} \, A \). We already saw that \(f_* \mathcal{F} \) is quasi-coherent, so we only need to check that \(\Gamma(Y, \mathcal{F}) \) is finitely generated \(A \)-module.

Suppose that \(\mathcal{E} \) is a locally free \(\mathcal{O}_X \)-module of finite rank. We define the dual \(\mathcal{E}^* \) of \(\mathcal{E} \) to be \(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X) \). Then as usual, (for any \(\mathcal{F}, \mathcal{G} \in \mathcal{O}_X \text{-Mod} \):

\[
\mathcal{E}^* \cong \mathcal{E}, \quad \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F}) \cong \mathcal{E}^* \otimes \mathcal{F}, \quad \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E} \otimes \mathcal{F}, \mathcal{G}) \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G})).
\]
We have the following projection formula, given \(f : X \rightarrow Y, \mathcal{F} \in \mathcal{O}_X\text{-Mod} \) and \(\mathcal{E} \in \mathcal{O}_Y\text{-Mod} \), with \(\mathcal{E} \) locally free:

\[
fs(\mathcal{F} \otimes \mathcal{O}_X f^*(\mathcal{E})) \cong fs(\mathcal{F}) \otimes \mathcal{O}_Y \mathcal{E}.
\]

(That is, given \(f : X \rightarrow Y \), a sheaf \(\mathcal{F} \) on the X and a locally free sheaf \(\mathcal{E} \) on Y, we can form two tensor products. We can pull \(\mathcal{E} \) back to X and tensor with \(\mathcal{F} \), or push \(\mathcal{F} \) forward to Y and tensor with \(\mathcal{E} \). The two outcomes are the same when they are compared on Y.)

Let \(X \) be a noetherian scheme, and let \(\mathcal{F} \) be a coherent sheaf. Then \(\mathcal{F} \) is locally free iff the stalks \(\mathcal{F}_x \) are free \(\mathcal{O}_{X,x} \)-modules for all \(x \in X \). Moreover, \(\mathcal{F} \) is invertible (locally free of rank one) iff there exists \(\mathcal{G} \in \text{Coh}_X \) such that \(\mathcal{F} \otimes \mathcal{G} \cong \mathcal{O}_X \) (justifying the name ‘invertible’). Of course, \(\mathcal{G} = \mathcal{F} \).

Proof. Suppose that \(\mathcal{F}, \mathcal{G} \) are coherent (over a noetherian scheme \(X \)) such that \(\mathcal{F} \otimes \mathcal{G} \cong \mathcal{O}_X \).

It is enough to prove that \(\mathcal{F}_x \) is a free \(\mathcal{O}_{X,x} \)-module of rank one for all \(x \in X \), as this shows that \(\mathcal{F}_x \) is locally free of rank one. Now write \(M = \mathcal{F}_x, \ N = \mathcal{G}_x \) and \(L = \mathcal{O}_{X,x} \). We know that \(L \) is local, and \(M \otimes_L N = L \). All we are to do is show that in this setting, \(M \) is a free module of rank 1. But we have \((M \otimes_L N)/m(M \otimes_L N) = M/mM \otimes_L N/mN \), and this tensor product has dimension one! So \(M/mM \) has dimension one over the residue field, and Nakayama’s lemma shows that \(M \) is generated by one element. Of course, this element must have annihilator zero, so that \(M \) is free of rank one.

Exercise 5.8: Let \(X \) be noetherian, and \(\mathcal{F} \in \text{Coh}_X \). Consider \(\phi(x) := \dim_{k(x)} \mathcal{F}_x \otimes \mathcal{O}_x k(x), \) where \(k(x) = \mathcal{O}_x/m_x \) is the residue field at \(x \).

(a) \(\phi \) is upper semicontinuous (i.e. it exceeds any given value on a closed set).

(b) If \(\mathcal{F} \) is locally free, then \(\phi \) is locally constant.

(c) Conversely, if \(X \) is reduced, and \(\phi \) is locally constant, then \(\mathcal{F} \) is locally free.

Interpretation of \(\phi(x) \) — suppose that \(\mathcal{F} \) is the sheaf of sections of an \(n \)-bundle (which is locally free). Then \(\mathcal{F}_x \) is the \(\mathcal{O}_x \)-module of germs of sections at \(x \), where \(\mathcal{O}_x \) is the local ring of germs of functions at \(x \). Tensoring with \(k(x) \) removes the word ‘germs’: we have \(\mathcal{F}_x \otimes k(x) = \mathcal{F}_x/m_x \mathcal{F}_x \), which is the \(k(x) \)-vector space of values of the sections can take over \(x \). Thus, we obtain the rank of \(\mathcal{F} \) at \(x \). Had we not assumed that \(\mathcal{F} \) was locally free, then we would still have obtained a nice number measuring the size of the stalk.

We’ll prove this result using **Nakayama’s lemma:** suppose that \((A, m)\) is a local ring and \(M \) is a finitely generated \(A \)-module. Then any basis for the \(A/m \)-vector space \(M/mM \) lifts to a (minimal) generating set for \(M \) as an \(A \)-module.

In the context of the exercise, we use the local ring \((\mathcal{O}_x, m_x)\), and the finitely generated module \(\mathcal{F}_x \). Thus we may reinterpret \(\phi(x) \) as the minimal number of generators required for the module \(\mathcal{F}_x \).

Proof. To prove (a), we’ll observe that generators of \(\mathcal{F}_x \) extend to sections \(s_i \in \Gamma(U, \mathcal{F}) \), where \(U \) is an open neighbourhood of \(x \), and that the image of the \(s_i \) generates the stalks \(\mathcal{F}_y \) for \(y \) in some smaller neighbourhood of \(x \). For this, we may assume that in fact \(U = \text{Spec} \, R \) for \(R \) noetherian in which case \(\mathcal{F}|_U = M \) for some \(M \in R\text{-Mod}^{f.g.} \), generated by \(g_1, \ldots, g_n \). Then the \(s_i \) are in fact elements of \(M \), which generate \(M_x \) as an \(R_x \)-module. That is to say,
there are elements $a_{ij} \in R$ and $t \in R \setminus x$ such that:

$$m_i = \sum_j \frac{a_{ij}}{t} \cdot s_j, \text{ for each } j.$$

Of course, this expression makes sense wherever $t \in R$ remains invertible — on $D(t) \subset R$.

(b) follows from basic considerations of rank. For (c), we reduce to the case where $X = \text{Spec } A$, $\mathcal{F} = M$, and we have $m_1, \ldots, m_r \in M$ which minimally generate M_p in each localisation. Then we have a map $\gamma : A^r \rightarrow M$, given by $(x_1, \ldots, x_r) \mapsto \sum x_im_i$, such that $(A_p/pA_p)^r \rightarrow M_p/pM_p$ is an isomorphism for all p. Of course, if $(x_1, \ldots, x_r) \in \ker \gamma$, then $x_i \in p$ for all p, so that $x_i = 0$ (as R is reduced). So γ is an isomorphism.

A note on vector bundles: a finitely generated module over a noetherian ring is locally free if and only if it is projective, so over an affine noetherian scheme $\text{Spec } A$, the vector bundles and the finitely generated projective A-modules coincide.

Hartshorne II.6 — Divisors

A scheme is said to be regular in codimension one if every local ring of dimension one is regular. (This includes nonsingular varieties, and noetherian normal schemes, as a noetherian local domain of dimension one is integrally closed iff it is regular.)

In our discussion of Weil divisors, we consider schemes satisfying the following conditions:

(*) X is a noetherian integral separated scheme, regular in codimension one.

Let X be a scheme satisfying (*).

- A prime divisor is a closed integral subscheme of codimension one. (A closed integral subscheme is determined by its set-theoretic image.)
- A Weil divisor is an element of the free abelian group Div on the prime divisors.
- A Weil divisor is effective if it is a nonnegative linear combination of prime divisors.

Suppose that X satisfies (*), and that $f \in K^*$, where K is the function field. Each prime divisor Y with generic point η gives a DVR $\mathcal{O}_{X,\eta}$ with quotient field K. We denote by v_Y the valuation on K corresponding to this DVR. (When $v_Y(f)$ is positive, it measures the highest power of the maximal ideal f lies in.) Depending on whether $v_Y(f)$ is positive or negative, we say that f has a zero or a pole on Y.

We define a divisor $(f) = \sum v_Y(f) \cdot Y$. This is called a principal divisor, (lemma 6.1 states that it is actually a finite sum as required) and the map $K^* \rightarrow \text{Div}(X)$ is a homomorphism.

The divisor class group $\text{Cl}(X)$ is the cokernel of this homomorphism. That is, $\text{Cl}(X)$ is the group $\text{Div}(X)$ modulo linear equivalence, where two divisors are linearly equivalent if they differ by a principal divisor.

Proposition 6.2: Let A be a noetherian domain. Then A is a UFD iff $X = \text{Spec } A$ is normal and $\text{Cl}(X) = 0$. (The proof uses proposition 6.3A, which essentially states that if A is a noetherian normal domain, $a \in A_{(0)}$ defines a function on all of $\text{Spec } A$ iff it has no poles on any prime divisor.)

\[\text{Everything always needs to be separated and noetherian. } X \text{ needs to be integral so that there is a function field. } X \text{ needs to be regular in codimension one so that we can define the degree of vanishing of an element of the function field using the DVR structure. }\]
This shows that $\text{Cl}(\mathbb{A}^2_k) = 0$.

When A is a Dedekind domain, $\text{Cl}(ext{Spec } A)$ is the ideal class group of A.

Proposition 6.4: Let $X = \mathbb{P}^n_k$ (k a field). The homomorphism $\text{deg} : \text{Div}(X) \rightarrow \mathbb{Z}$ which sends a prime divisor to its degree (the degree of a polynomial used to generate its homogeneous ideal) has kernel the subgroup of principal divisors. Thus $\text{Cl}(X) = \mathbb{Z}$, generated by the class of a hyperplane.

Proof. Note that if D is a divisor of degree d, then $D \sim dH$, where H is the hyperplane $x_0 = 0$. Moreover, it is clear (as $K = k[x_0, \ldots, x_n]_{(0)}$), that any $f \in K^*$ has $\text{deg}(f) = 0$. \square

Proposition 6.5: Suppose that X satisfies (*), and that Z is a proper closed subset. Let $U = X - Z$. Then the map $\text{Div}(X) \rightarrow \text{Div}(U)$ sending a prime divisor Y to $Y \cap U$ (or zero if this is empty) descends to a surjective homomorphism $\text{Cl}(X) \rightarrow \text{Cl}(U)$.

- If Z has codimension more that one, this is an isomorphism.
- If Z is irreducible of codimension one, the kernel is generated by Z. That is, there is an exact sequence $\mathbb{Z} \rightarrow \text{Cl}(X) \rightarrow \text{Cl}(U) \rightarrow 0$, where $1 \mapsto 1 \cdot Z \in \text{Cl}(X)$.

If Y is an irreducible curve of degree d in \mathbb{P}^2, then $\text{Cl}(\mathbb{P}^2 - Y) = \mathbb{Z}_d$.

Example 6.5.2: the quadric cone, $xy = z^2$. Let $A = k[x, y, z]/xy - z^2$, and let $X = \text{Spec } A$, the quadric cone. Let Y be the divisor specified by $y = z = 0$.

- We determine that $X - Y$ is Spec A_y, as $y = 0$ determines that $z = 0$. Now $A_y = k[y^\pm 1, z]$ is a UFD so that $\text{Cl}(X - Y) = 0$. Thus the above exact sequence tells us that $\text{Cl}(X)$ is generated by the image of the prime divisor Y.
- We calculate the principal divisor (y). To find $v_Y(y)$, we note that the generic point of Y is the ideal $\eta = (y, z) \subset A$. In the localisation A_η, this becomes the maximal ideal, any polynomial which is nonzero upon substituting $y = z = 0$ becomes invertible. That includes x, so we can write $y = x^{-1}z^2$. In particular, z generates the maximal ideal, and y has valuation two. The function y has no poles, and has no other zeros, so that $(y) = 2Y$.
- For a noetherian domain, being normal is a local property (A is normal iff the A_p are normal iff the A_m are normal), and A is integrally closed (exercise 6.4 — essentially as $xy - z^2$ is squarefree). Thus it is enough to show that A is not a UFD, in order to see that Y is not principal, and that $\text{Cl}(X) = \mathbb{Z}_2(Y)$. It was obvious from the beginning that A was not a UFD: $xy = z^2$!

Proposition 6.6: If X satisfies (*), then so does $X \times \mathbb{A}^1$, and $\text{Cl}(X \times \mathbb{A}^1) = \text{Cl}(X)$.

Proof. The key point is to observe that we can reduce to divisors which are the product of a codimension one point of X with \mathbb{A}^1. To see this, let K be the function field of X. Then we have pullbacks:

$$
\begin{array}{c}
\text{Spec } K[t] \longrightarrow X \times \mathbb{A}^1 \\
\downarrow \\
\text{Spec } K \xrightarrow{\eta_X} X \\
\downarrow \\
\text{Spec } \mathbb{A}^1_k \longrightarrow \text{Spec } Z
\end{array}
$$

Now given a prime divisor $Z \subset X \times \mathbb{A}^1$, we intersect with $\text{Spec } K[t]$, the fibre of η_X, to obtain a divisor Z' on $\text{Spec } K[t] = \mathbb{A}^1_k$. As $K[t]$ is a UFD, we have that $\text{Cl}(\mathbb{A}^1_k) = 0$, so that Z' is principal, equal to (f) for some $f \in K(t)$. In particular, back on $X \times \mathbb{A}^1$, $Z - (f)$ has zero
intersection with the fibre of \(\eta_X \), so that its components are supported \(C \times \mathbb{A}^1 \), for \(C \subset X \) a proper closed subset. But then, for dimension reasons, we must have \(Z - (f) \) equal to a sum of divisors of the form \(y \times \mathbb{A}^1 \), where \(y \in X \) has codimension one.

Now we have a map \(\pi_1^* : \operatorname{Cl}(X) \to \operatorname{Cl}(X \times \mathbb{A}^1) \) given by taking the preimage under the first projection. This map is surjective, by the previous argument. To see that it is injective, suppose that \(\sum n_y(y \times \mathbb{A}^1) \) is zero in \(\operatorname{Cl}(X \times \mathbb{A}^1) \). Then \(\sum n_y(y \times \mathbb{A}^1) = (f) \) for \(f \) a nonzero element of the function field of \(X \times \mathbb{A}^1 \). This function field is in fact the quotient field of \(K[t] \), so that \(f = g/h \) for \(g, h \in K[t] \setminus \{0\} \). We can assume that \((g, h) = 1 \), so that there is no cancellation when taking the difference \((g) - (h) \). We want to see that \(f, g \) are in fact constant polynomials, so that the sum \(\sum n_y(y) \) was already zero in \(\operatorname{Cl}(X) \).

As \((g, h) = 1 \), we have that \((g) \) contains only prime divisors of the form \(y \times \mathbb{A}^1 \). But this should imply that \(g \) is a constant polynomial. If \(g \) is not constant, let \(\operatorname{Spec} R \in X \) be any open affine subset. Then form the intersection:

\[
\begin{array}{c}
\text{Spec } K[t]/g \\
\downarrow \\
\text{Spec } R[t]/g \\
\downarrow \\
\text{Spec } K \\
\end{array}
\]

That this intersection (of \((g) \) with \(\eta_X \times \mathbb{A}^1 \)) is nonempty gives a contradiction. \(\square \)

\(\sim \) **Exercise 6.1:** Let \(X \) satisfy (\(* \)). Then \(X \times \mathbb{P}^n \) satisfies (\(* \)), and \(\operatorname{Cl}(X \times \mathbb{P}^n) = \operatorname{Cl}(X) \times \mathbb{Z} \).

Proof. For proposition 6.5, we have an exact sequence, and it splits:

\[
\begin{array}{c}
\mathbb{Z} \\
\downarrow \\
\operatorname{Cl}(X \times \mathbb{P}^n) \\
\downarrow \\
\operatorname{Cl}(X \times \mathbb{A}^n) \\
\end{array} \to 0
\]

All that remains is to check that the image of \(1 \in \mathbb{Z} \), being the class of \(X \times H \) (\(H \) a hyperplane), has infinite order. But this will follow by an argument as above, noting that the class of a hyperplane in \(\operatorname{Cl}(\mathbb{P}^n) \) has infinite order, by proposition 6.4. \(\square \)

\(\sim \) To save a bit of time, I’m skipping the next few examples. Note, however, that the nonsingular quadric surface \(xy = zw \) in \(\mathbb{P}^3 \), which is just the Segre embedding of \(\mathbb{P}^1 \times \mathbb{P}^1 \), has class group \(\mathbb{Z} \times \mathbb{Z} \), with the obvious generators.

\(\sim \) Let \(k \) be algebraically closed. A curve over \(k \) is an integral separated scheme \(X \) of finite type over \(k \), of dimension one. If \(X \) is proper over \(k \), we say it is complete.

\(\sim \) **Proposition 6.7:** Let \(X \) be a nonsingular curve over \(k \) with function field \(K \). Then \(X \) is projective iff \(X \) is complete iff \(X = t(C_K) \).

\(\sim \) **Proposition 6.8:** Let \(X \) be a complete nonsingular curve over \(k \), \(Y \) be any curve over \(K \), and let \(f : X \to Y \) be a nonconstant morphism. Then \(f(X) = Y \), \(K(X) \) is a finite extension of \(K(Y) \), \(f \) is a finite morphism, and \(Y \) is complete.

\(\sim \) To study divisors on a nonsingular curve \(X \), we define a map \(\deg : \operatorname{Div}(X) \to \mathbb{Z} \) which sends each prime divisor (i.e. each closed point) to 1.

\(\sim \) If \(f : X \to Y \) is a finite morphism of curves, we define the degree of \(f \) to be the degree of the extension \([K(X) : K(Y)] \).
Given a finite map \(f : X \to Y \), we obtain a \(f^* : \text{Div}(Y) \to \text{Div}(X) \) by the following method. To define \(f^*(Q) \), let \(t \in \mathcal{O}_Q \) be a local parameter at \(Q \); an element of \(K(Y) \) with \(v_Q(t) = 1 \). Calculate \(v_P(f^*t) \) for each of the (finitely many) points \(P \in f^{-1}(Q) \), and use these as the coefficients of said \(P \) in \(f^*(Q) \). This induces a homomorphism \(f^* : \text{Cl}(Y) \to \text{Cl}(X) \). Moreover, Proposition 6.9 states that \(\deg(f^*(Q)) = \deg(f) \) for all \(Q \in Y \), so that:

\(~ \) Corollary 6.10: A principal divisor on a complete nonsingular curve \(X \) has degree zero, so that the degree function gives an epimorphism \(\text{Cl}(X) \to \mathbb{Z} \).

\(~ \) Example 6.10.1: By proposition 6.8 and 6.9: a complete nonsingular curve is rational (birational to \(\mathbb{P}^1 \)) if and only if there exist two distinct linearly equivalent points.

\[\text{Proof.} \] If \(X \) is rational, it’s already projective, by 6.7, so we’re done. Suppose instead that \(P \sim Q \). Then for some \(f \in K(X) \), viewed as a morphism \(X \to \mathbb{P}^1 \), we have \(f^{-1}(0) = P \), \(f^{-1}(\infty) = Q \). By proposition 6.9, \(\deg(f) = 1 \), so that \([K(X) : K(\mathbb{P}^1)] \) has degree one, and \(X \) is rational. \(\square \)

\(~ \) Example 6.10.2: Let \(X \) be the nonsingular cubic \(y^2z = x^3 - xz^2 \) in \(\mathbb{P}^2 \) (char \(k \neq 2 \)). \(X \) is not rational. Let \(\text{Cl}^0 \) \(X \) be the kernel of \(\deg : \text{Cl}(X) \to \mathbb{Z} \), a nonzero group. We’ll see that the group \(\text{Cl}^0(X) \) can be put in bijection with the points of \(X \), making \(X \) an abelian group variety.

Whenever \(P, Q \) and \(R \) are three points of \(X \), we will write \(\overrightarrow{PQR} \) as shorthand for \("\ P, Q \ \text{and} \ \ R \ \text{are collinear}"^4. The observation which generates all others is that if \(\overrightarrow{PQR} \) and \(\overrightarrow{ABC} \), then \(P + Q + R \), and \(A + B + C \) are linearly equivalent divisors.

Now let \(P_0 \) be any fixed point of \(X \)^5. Given any two points \(R \) and \(S \), find \(I \) such that \(\overrightarrow{RP_0I} \) and then \(D \) such that \(\overrightarrow{ISD} \). Then \(R - S = D - P_0 \). Given any two points \(P \) and \(Q \), find \(I \) such that \(\overrightarrow{PQI} \) and then \(S \) such that \(\overrightarrow{IS} \). Then \(P + Q = S + P_0 \). We can rewrite these equations as:

\[(R - P_0) - (S - P_0) = (D - P_0); \quad (P - P_0) + (Q - P_0) = (S - P_0). \]

In particular, every element of the group \(\text{Cl}^0(X) \) can be written as \((P - P_0) \) for some \(P \in X \). This element is unique, as otherwise, \(P \sim Q \) for some \(P \neq Q \), which (by 6.10.1) would contradict the fact that \(X \) is not rational. Thus \(X \) is in bijection with \(\text{Cl}^0(X) \) via \(P \leftrightarrow (P - P_0) \), and the two constructions of \(S \) and \(D \) used above describe the sum and difference in the induced group structure on \(X \).

If \(X \) is a complete nonsingular curve, then \(\text{Cl}^0(X) \) is isomorphic to the set of closed points of the Jacobian variety \(J(X) \) of \(X \). The dimension of \(J(X) \) equals the genus of \(X \)! The whole of \(\text{Cl}(X) \) is an extension of \(\mathbb{Z} \) by the group of closed points of \(J(X) \).

Cartier Divisors

First, we will need an analogue for general schemes \(X \) of the function field of an integral scheme. This will be the sheaf \(\mathcal{K} \) of total quotient rings. It has an associated sheaf of

^4Note that if \(f \) is unramified at \(P \), the coefficient \(v_P(f^*(t)) \) of \(P \) in \(f^*(Q) \) is one.

^5i.e. \(\overrightarrow{PQR} \) iff \(P, Q \) and \(R \) are the three points of intersection of a line in \(\mathbb{P}^2 \) with \(X \), counted with multiplicity.

^5One might choose \(P_0 = [0 : 1 : 0] \), the point of inflection, so that \(P_0P_0P_0 \).
(multiplicative) abelian groups, \mathcal{K}^*, the invertible elements in each ring, and there is an evident short exact sequence, $1 \rightarrow \mathcal{O}^* \rightarrow \mathcal{K}^* \rightarrow \mathcal{K}^*/\mathcal{O}^* \rightarrow 1$, yielding:

\[\Gamma(X, \mathcal{K}^*) \xrightarrow{\pi^*} \Gamma(X, \mathcal{K}^*/\mathcal{O}^*) \rightarrow H^1(X, \mathcal{O}^*) \rightarrow H^1(X, \mathcal{K}^*) \]

A Cartier divisor is an element of $\Gamma(X, \mathcal{K}^*/\mathcal{O}^*)$, and the principal Cartier divisors are those in the image of π_*. We define the Cartier class group $\text{CaCl}(X)$ to be the cokernel of π_*. As $H^1(X, \mathcal{O}^*)$ is the Picard group $\text{Pic}(X)$ of invertible sheaves on X, we obtain a natural injective map $\mathcal{L} : \text{CaCl}(X) \rightarrow \text{Pic}(X)$.

\[\Rightarrow \text{There are two ways to think about the sheaf } \mathcal{H} \text{ of total quotient rings.} \]

- For each open affine $U = \text{Spec } A$, let $K(U)$ be the total quotient ring of A: the localisation of A by the multiplicative system of non-zero-divisors in A. These rings form a presheaf on the basis of open affine subsets, and the sheafification is the sheaf of total quotient rings \mathcal{H}.

- For each open subset U, let $S(U)$ be the set of elements of $\Gamma(U, \mathcal{O})$ which are map to non-zero-divisors in each local ring \mathcal{O}_x for $x \in U$. The rings $\Gamma(U, \mathcal{O})[S(U)^{-1}]$ form a presheaf, whose associated sheaf of rings is also \mathcal{H}.

\[\Rightarrow \text{A Cartier divisor can be specified by giving an open cover } \{U_i\} \text{ of } X \text{ and elements } f_i \in \Gamma(U_i, \mathcal{K}^*) \text{ such that each } f_i/f_j \text{ is an element of } \Gamma(U_i \cap U_j, \mathcal{O}^*). \]

\[\Rightarrow \text{Proposition 6.11: Let } X \text{ be an integral, separated noetherian scheme, all of whose local rings are UFDs, thus } X \text{ satisfies } (*). \text{ Then } \text{Div}(X) \cong \text{CaDiv}(X), \text{ and principal Weil divisors correspond to principal Cartier divisors, so that } \text{Cl}(X) \cong \text{CaCl}(X). \]

As X is integral, \mathcal{K}^* is just the constant sheaf K^*. Given a Cartier divisor $\{(U_i, f_i)\}$, for a given prime Weil divisor Y, choose i such that $U_i \cap Y \neq \emptyset$. Then in fact $U_i \cap Y$ is dense in Y, and v_Y is contained in U_i. Thus we can calculate $v_Y(f_i)$, and make this the coefficient of Y. This sum is finite, as X is noetherian. This construction can be carried through even when X is only normal. In fact:

\[\Rightarrow \text{Remark 6.11.2: If } X \text{ is only a normal scheme (not locally factorial), then we can define a subgroup } \text{LPDiv}(X) \text{ of } \text{Div}(X) \text{ consisting of the locally principal Weil divisors, those } D \in \text{Div}(X) \text{ which can be covered by open sets such that } D|_U \text{ is principal for all } U. \text{ Then the above construction gives an isomorphism } \text{CaDiv}(X) \cong \text{LPDiv}(X). \text{ Moreover, as principal Weil divisors are locally principal, this descends to class groups, and } \text{CaCl}(X) \text{ is isomorphic to the subgroup of } \text{Cl}(X) \text{ consisting of locally principal divisors.} \]

\[\Rightarrow \text{Example 6.11.3: To give a Weil divisor which is not Cartier, we revisit example 6.5.2, the quadric cone } xz = y^2. \text{ We just need to see that } Y \text{ is not locally principal. That is, we should see that } (y, z) \text{ is not principal in the ring } k[x, y, z]/(xy - z^2)[S^{-1}], \text{ where } S \text{ is the multiplicative set of elements which are nonzero at } (0, 0, 0). \text{ This is true! Thus } \text{CaCl} = 0 \text{ while } \text{Cl} = \mathbb{Z}_2. \]

\[^6 \text{A ring all of whose localisations are UFDs is called locally factorial. For a one-dimensional local ring, being a UFD is the same as being regular.} \]
Invertible sheaves

\(\Rightarrow\) Given a Cartier divisor \(D = (U_i, f_i)\), we obtain an invertible sheaf \(\mathcal{L}(D)\) as the sub-\(\mathcal{O}_X\)-module of \(\mathcal{K}\) generated by \(f_i^{-1}\) over \(U_i\).

\(\Rightarrow\) To describe the map \(\mathcal{L}\), note that we have defined:

\[\mathcal{L}(D)(U) := \{ f \in \mathcal{K} : (f) + D \geq 0 \text{ on } U \}.\]

Proposition 6.13: \(D \mapsto \mathcal{L}(D)\) gives a bijection between Cartier divisors and invertible subsheaves of \(\mathcal{K}\). Moreover \(D_1 \sim D_2\) iff \(\mathcal{L}(D_1) \cong \mathcal{L}(D_2)\).

Corollary 6.14: \(D \mapsto \mathcal{L}(D)\) gives an injective map \(\text{CaCl}(X) \hookrightarrow \text{Pic}(X)\).

Proposition 6.15: \(\text{CaCl}(X) \longrightarrow \text{Pic}(X)\) is an isomorphism when \(X\) is integral.

Corollary 6.16: If \(X\) is a noetherian, integral, separated locally factorial scheme, then there is a natural isomorphism \(\text{CaCl}(X) \cong \text{Pic}(X)\).

Corollary 6.17: \(\text{Pic}(\mathbb{P}^n_\mathbb{K}) \cong \mathbb{Z}\).

\(\Rightarrow\) An effective Cartier divisor is one of the form \((U_i, f_i)\) with \(f_i \in \Gamma(U_i, \mathcal{O}_{U_i})\). Then we can define the associated subscheme of codimension one, as the subscheme defined by the sheaf of ideals locally generated by \(f_i\).

\(\Rightarrow\) This gives a bijective correspondence between effective Cartier divisors and locally principal closed subschemes. Moreover:

Proposition 6.18: If \(D\) is an effective Cartier divisor, and \(Y\) is the associated locally principal closed subscheme, then \(\mathcal{I}_Y \cong \mathcal{L}(-D)\).

Hartshorne II.7 — Projective Morphisms

\(\Rightarrow\) **Theorem 7.1:** Suppose \(A\) is a ring and \(X\) is a scheme over \(A\). Then it is the same to give an \(A\)-morphism \(\varphi : X \rightarrow \mathbb{P}^n_A\) as to give an invertible sheaf \(\mathcal{L}\) on \(X\) generated by global sections \(s_0, \ldots, s_n\).

Proof. Given \(\varphi\), let \(\mathcal{L} = \varphi^*\mathcal{O}(1)\), and let \(s_i = \varphi^*(x_i)\), where \(x_i \in \mathcal{O}(1)\). On the other hand, let \(X_i = \{ P \in X \mid (s_i)_P \notin \mathfrak{m}_P \mathcal{L}_P \}\). This is an open subset of \(X\) (which is not the support of \(s_i\)). Define a morphism \(X_i \rightarrow U_i\) via a map \(A \left[\frac{x_0}{x_i}, \ldots, \frac{x_n}{x_i} \right] \rightarrow \Gamma(X_i, \mathcal{O}_{X_i})\) sending \(\frac{r}{x_i}\) to the ratio of \(s_r\) to \(s_i\) in each stalk. \(\square\)

Example 7.1.1: Automorphisms of \(\mathbb{P}^n_\mathbb{K}\). Every automorphism of \(\mathbb{P}^n_\mathbb{K}\) is \(\text{PGL}\). Suppose that \(\varphi\) is an automorphism. Then \(\varphi^*(\mathcal{O}(1))\) generates \(\text{Pic}(\mathbb{P}^n)\), so is \(\mathcal{O}(\pm 1)\). But it must have a nonzero section, so that \(\varphi^*(\mathcal{O}(1)) \cong \mathcal{O}(1)\). But now \(\varphi\) is determined by the global sections \(\varphi^*(x_i)\), which must a basis of the \((n+1)\)-dimensional vector space \(\Gamma(\mathbb{P}^n_\mathbb{K}, \mathcal{O}(1))\).

Proposition 7.2: If \(\varphi\) is the morphism as in 7.1, then \(\varphi\) is a closed immersion iff

1. each open set \(X_i\) is affine, and
2. the maps \(A \left[\frac{x_0}{x_i}, \ldots, \frac{x_n}{x_i} \right] \rightarrow \Gamma(X_i, \mathcal{O}_{X_i})\) are surjective.

Proposition 7.3: If \(A = k = \overline{k}\) is an algebraically closed field, and \(X\) is projective over \(k\). Let \(V \subset \Gamma(X, \mathcal{L})\) be the subspace spanned by the \(s_i\). Then \(\varphi\) is a closed immersion iff

1. elements of \(V\) separate points: for all distinct closed points \(P, Q\), there’s an \(s \in V\) such that \(s \in \mathfrak{m}_P \mathcal{L}_P\) but \(s \notin \mathfrak{m}_Q \mathcal{L}_Q\) or vice versa, and

21
elements of V separate tangent vectors: for each closed point P, the set $\{s \in V \mid s_P \in m_P.L_P\}$ spans the cotangent space $m_P.L_P/m_P^2.L_P$.

An invertible sheaf \mathcal{L} on a noetherian scheme is said to be ample if for all coherent sheaves \mathcal{F} there is an integer n_0 such that for $n \geq n_0$, $\mathcal{F} \otimes \mathcal{L}^n$ is g.b.g.s. Note that ‘ample’ is absolute, while ‘very ample’ is relative.

Proposition 7.5: For \mathcal{L} an invertible sheaf on a noetherian scheme, \mathcal{L} is ample iff all positive tensor powers of \mathcal{L} are ample iff some positive tensor power of \mathcal{L} is ample.

Theorem 7.6: Let X be a scheme of finite type over a noetherian ring A, and \mathcal{L} an invertible sheaf. The \mathcal{L} is ample iff some power of \mathcal{L} is very ample over Spec A.

Example 7.6.2: The invertible sheaf of type (a,b) on $\mathbb{P}^1 \times \mathbb{P}^1$ is very ample when $a,b > 0$, using two uple embeddings. It is not generated by global sections when either of a or b are negative, so the ample sheaves coincide with the very ample sheaves.

Given an invertible sheaf \mathcal{L} on X, and a section $s \in \Gamma(X,\mathcal{L})$, define an effective divisor $D = (s)_0$, the divisor of zeros as follows. Over an open set where \mathcal{L} is trivial, choose an isomorphism $\varphi : \mathcal{L}|_U \rightarrow O_U$, and take the effective Cartier divisor $\{(U, \varphi(s))\}$.

Proposition 7.7: Let X be a nonsingular projective variety over an algebraically closed field k (so that Weil and Cartier divisors are equivalent). For any divisor D_0 there is a bijection:

$$\mathbb{P}(\Gamma(X, \mathcal{L})) \rightarrow \{\text{effective divisors } D \mid D \sim D_0\} =: |D_0|$$

The sets $|D_0|$ are called complete linear systems on X. A linear system \mathfrak{d} is a linear subspace of a complete linear system. Its dimension is its dimension as a linear projective variety.

No two points on an elliptic curve are linearly equivalent: It is the same to show that an intersection $\ell \cap C$ is only linearly equivalent to other such intersections. [UMMM.. There’s a SES:

$$0 \rightarrow \mathcal{O}_{\mathbb{P}^2}(1) \xrightarrow{x} \mathcal{O}_{\mathbb{P}^2}(1) \rightarrow \mathcal{O} \rightarrow 0$$

Now pullback is exact, so that it can be shown that there’s a surjection.

$$H^0(X, \mathcal{O}_{\mathbb{P}^2}(1)) \rightarrow H^0(C, \mathcal{O}_{\mathbb{P}^2}(1)|_C).$$

But $\ell \cap C$ is the divisor arising from the section of $H^0(C, \mathcal{O}_{\mathbb{P}^2}(1)|_C)$ given by the restriction of some linear form on \mathbb{P}^2 to C. So we are done.

Index

abstract nonsingular curve, 4
adjunction, 2, 12
affine, 8
affine scheme, 7
ample, 22
analytically isomorphic, 3
automorphisms of \mathbb{P}^n_k, 21
base, 2
base extension, 3
birational, 2
coherent, 12
complete, 11, 18
complete nonsingular curve, 18, 19
d-uple, 1
Cohen Structure Theorem, 3
Dedekind domain, 4

dedekind domain
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>of proper scheme</td>
<td>12</td>
</tr>
<tr>
<td>scheme theoretic</td>
<td>9</td>
</tr>
<tr>
<td>immersion,</td>
<td>14</td>
</tr>
<tr>
<td>closed,</td>
<td>8</td>
</tr>
<tr>
<td>open,</td>
<td>8</td>
</tr>
<tr>
<td>integral,</td>
<td>8</td>
</tr>
<tr>
<td>integral closure</td>
<td></td>
</tr>
<tr>
<td>finiteness of,</td>
<td>10, 11</td>
</tr>
<tr>
<td>integrally closed,</td>
<td>4</td>
</tr>
<tr>
<td>is local property,</td>
<td>4</td>
</tr>
<tr>
<td>inverse image,</td>
<td>6, 12</td>
</tr>
<tr>
<td>inverse limit sheaf,</td>
<td>6</td>
</tr>
<tr>
<td>invertible,</td>
<td>12, 15</td>
</tr>
<tr>
<td>irreducible,</td>
<td>1</td>
</tr>
<tr>
<td>Jacobian,</td>
<td>3</td>
</tr>
<tr>
<td>Jacobian variety</td>
<td>19</td>
</tr>
<tr>
<td>linear system,</td>
<td>22</td>
</tr>
<tr>
<td>complete,</td>
<td>22</td>
</tr>
<tr>
<td>local homomorphism,</td>
<td>6</td>
</tr>
<tr>
<td>local parameter,</td>
<td>19</td>
</tr>
<tr>
<td>local ring,</td>
<td>2</td>
</tr>
<tr>
<td>locally factorial,</td>
<td>20</td>
</tr>
<tr>
<td>locally free,</td>
<td>12</td>
</tr>
<tr>
<td>locally noetherian,</td>
<td>8</td>
</tr>
<tr>
<td>locally of finite type,</td>
<td>8</td>
</tr>
<tr>
<td>locally ringed space,</td>
<td>6</td>
</tr>
<tr>
<td>maximal ideals,</td>
<td>2</td>
</tr>
<tr>
<td>morphism</td>
<td></td>
</tr>
<tr>
<td>of ringed spaces,</td>
<td>6</td>
</tr>
<tr>
<td>of varieties,</td>
<td>2</td>
</tr>
<tr>
<td>Nakayama’s lemma</td>
<td>15</td>
</tr>
<tr>
<td>nilpotent,</td>
<td>7</td>
</tr>
<tr>
<td>noetherian,</td>
<td>7, 9</td>
</tr>
<tr>
<td>induction,</td>
<td>8</td>
</tr>
<tr>
<td>space,</td>
<td>1</td>
</tr>
<tr>
<td>nonsingular,</td>
<td>3</td>
</tr>
<tr>
<td>normal,</td>
<td>4, 16</td>
</tr>
<tr>
<td>is local property,</td>
<td>17</td>
</tr>
<tr>
<td>Nullstellensatz,</td>
<td>1</td>
</tr>
<tr>
<td>Picard group,</td>
<td>20</td>
</tr>
<tr>
<td>presheaf,</td>
<td>5</td>
</tr>
<tr>
<td>prime,</td>
<td>1</td>
</tr>
<tr>
<td>Proj,</td>
<td>17</td>
</tr>
<tr>
<td>projection formula,</td>
<td>15</td>
</tr>
<tr>
<td>projective,</td>
<td>11</td>
</tr>
<tr>
<td>projective n-space,</td>
<td>11</td>
</tr>
<tr>
<td>projective closure,</td>
<td>1</td>
</tr>
<tr>
<td>proper,</td>
<td>8</td>
</tr>
<tr>
<td>quadric cone,</td>
<td>17</td>
</tr>
<tr>
<td>quadric surface,</td>
<td>1, 18</td>
</tr>
<tr>
<td>quasi-coherent,</td>
<td>12</td>
</tr>
<tr>
<td>quasi-compact,</td>
<td>7, 18</td>
</tr>
<tr>
<td>quasi-projective,</td>
<td>11</td>
</tr>
<tr>
<td>quotient sheaf,</td>
<td>5</td>
</tr>
<tr>
<td>radical,</td>
<td>1</td>
</tr>
<tr>
<td>rank,</td>
<td>12</td>
</tr>
<tr>
<td>rational,</td>
<td>2, 7, 19</td>
</tr>
<tr>
<td>rational functions,</td>
<td>2</td>
</tr>
<tr>
<td>rational map,</td>
<td>2</td>
</tr>
<tr>
<td>reduced,</td>
<td>8</td>
</tr>
<tr>
<td>reduced scheme,</td>
<td>7</td>
</tr>
<tr>
<td>regular</td>
<td></td>
</tr>
<tr>
<td>in codimension 1,</td>
<td>16</td>
</tr>
<tr>
<td>regular function,</td>
<td>2</td>
</tr>
<tr>
<td>regular functions,</td>
<td>2</td>
</tr>
<tr>
<td>regular local ring,</td>
<td>3, 4</td>
</tr>
<tr>
<td>residue field,</td>
<td>6, 7</td>
</tr>
<tr>
<td>restriction,</td>
<td>6</td>
</tr>
<tr>
<td>ringed space,</td>
<td>6</td>
</tr>
<tr>
<td>saturated ideal,</td>
<td>9</td>
</tr>
<tr>
<td>scheme,</td>
<td>7</td>
</tr>
<tr>
<td>Segre embedding,</td>
<td>1</td>
</tr>
<tr>
<td>separate</td>
<td></td>
</tr>
<tr>
<td>points,</td>
<td>21</td>
</tr>
<tr>
<td>tangent vectors,</td>
<td>22</td>
</tr>
<tr>
<td>separated,</td>
<td>8, 9</td>
</tr>
<tr>
<td>sheaf,</td>
<td>5</td>
</tr>
<tr>
<td>of \mathcal{O}_X-mods,</td>
<td>12</td>
</tr>
<tr>
<td>sheaf Hom,</td>
<td>6, 12</td>
</tr>
<tr>
<td>sheaf image,</td>
<td>5</td>
</tr>
<tr>
<td>sheaf of ideals,</td>
<td>12</td>
</tr>
<tr>
<td>sheafification,</td>
<td>5</td>
</tr>
<tr>
<td>Spec,</td>
<td>6</td>
</tr>
<tr>
<td>spectrum,</td>
<td>6</td>
</tr>
<tr>
<td>support,</td>
<td>6</td>
</tr>
<tr>
<td>tangent space,</td>
<td>7</td>
</tr>
<tr>
<td>tensor product,</td>
<td>12</td>
</tr>
<tr>
<td>total quotient ring,</td>
<td>19, 20</td>
</tr>
<tr>
<td>transcendence degree,</td>
<td>1, 2</td>
</tr>
<tr>
<td>twisted cubic,</td>
<td>1</td>
</tr>
<tr>
<td>twisted module,</td>
<td>13</td>
</tr>
<tr>
<td>twisting sheaf,</td>
<td>13, 14</td>
</tr>
<tr>
<td>UFD,</td>
<td>1, 4, 16</td>
</tr>
<tr>
<td>univ. closed,</td>
<td>8</td>
</tr>
<tr>
<td>unramified,</td>
<td>19</td>
</tr>
<tr>
<td>upper semicontinuous,</td>
<td>15</td>
</tr>
<tr>
<td>valuation,</td>
<td>4</td>
</tr>
<tr>
<td>valuation ring,</td>
<td>4</td>
</tr>
<tr>
<td>valutative criterion</td>
<td></td>
</tr>
<tr>
<td>properness,</td>
<td>10</td>
</tr>
<tr>
<td>separatedness,</td>
<td>9</td>
</tr>
<tr>
<td>variety,</td>
<td>1, 11</td>
</tr>
<tr>
<td>Veronese surface,</td>
<td>1</td>
</tr>
<tr>
<td>very ample,</td>
<td>1, 4</td>
</tr>
</tbody>
</table>

24