
MODEL ANSWERS TO HWK #9

1. It is proved in example 18.12 that M is maximal so that R/M is
a field and so it suffices to prove that R/M has cardinality 9. There
are two, essentially equivalent, ways to proceed. The first is to observe
that a + bi and c + di generate the same left coset if and only if (a −
c) + (b − d)i ∈ I, that is 3 divides a − c and 3 divides b − d. In turn,
this is equivalent to saying that a and c (respectively b and d) have the
same residue modulo 3. As there are 3 residues modulo three, namely
0, 1 and 2, there are 9 = 3× 3 left cosets, and R/M has cardinality 9.
The second way to proceed is to define a map

φ : Z[i] −→ Z⊕ Z,

by sending a + bi to (a, b). It is easy to check that this map is a
group homomorphism (and just as easy to see that it is not a ring
homomorphism). Under this correspondence, I corresponds to 3Z⊕3Z
and so the cardinality of R/M is equal to the cardinality of

Z⊕ Z
3Z⊕ 3Z

' Z3 ⊕ Z3,

which, as before, is 9 = 3× 3.
2. (i) This set is clearly non-empty, and if a, b, c and d are integers
then

(a+ b
√

2) + (c+ d
√

2) = (a+ b) + (c+ d)
√

2,

so that R is closed under addition, and

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2,

so that it is closed under multiplication as well. Thus R is a subring
of the real numbers.
(ii) Note that if a, b, c and d are divisible by 5 then a + b and c + d
are divisible by 5, so that M is closed under addition, and it is easy to
see that it is closed under inverses. Similarly if a and b are divisible by
5 then ac + 2bd and ad + bc are divisible by 5 as well and so M is an
ideal.
First note that, as

√
2 is irrational, then

a+ b
√

2 = c+ d
√

2,
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if and only if a = c and b = d. Indeed if b = d, then this is clear.
Otherwise, we can solve for

√
2 to obtain

√
2 =

a− c
d− b

∈ Q,

a contradiction. Thus the fact that R/M has 25 elements follows, as
in question 1.
It remains to prove that M is maximal. Given two integers a and b,
consider a2−2b2. The key point to establish is that if 5 does not divide
either a of b then it does not divide a2−2b2. The squares modulo 5 are
0, 1 and 4, and multiplying by 3 = −2 mod 5 we get 0, 3 and 2. If we
take the sum of one number from the first list and one number from
the second, the only way to get a number congruent to zero modulo 5,
is to pick zero from both. The rest follows as in example 18.12.
3. Take I to be the set of all Gaussian integers of the form a+bi, where
both a and b are divisible by 7. The key point is that if 7 does not
divide a, then 7 does not divide a2 + b2. Indeed the squares modulo
seven are 0, 1, 2 and 4, as can be seen by squaring 0, 1, 2 and 3 (for
the rest observe that a2 = (−a)2 = (7 − a)2, modulo seven). If a pair
of these sum to a number divisible by 7, then both of these numbers
must be 0, whence the result. The rest follows as in example 18.12.
4. We are told that I is an ideal. Suppose that J is any ideal of R, not
equal to the whole of R. I claim that J ⊂ I. Suppose not. Then there
is an element a ∈ R such that a ∈ J whilst a /∈ I. By assumption,
a is then a unit of R, so that there is an element b ∈ R such that
ab = 1. Then 1 = ba ∈ J . Let c be an arbitrary element of R. Then
c = c · 1 ∈ J . Thus J = R, a contradiction. It follows easily that I is
the unique maximal ideal.
5. (i) Replacing S by the image of φ, we may as well assume that φ
is surjective. Let ψ denote the composition of φ and the natural map
from S to S/J . Then the kernel of ψ is I. Thus I is an ideal of R.
Moreover by the Isomorphism Theorem,

R

I
' S

J
.

As J is prime, S/J is an integral domain. Thus R/I is also an integral
domain and so I is prime.
(ii) The key point is to exhibit an ideal of a ring that is prime but not
maximal. For example take the zero ideal in Z. Consider the natural
inclusion

φ : Z −→ Q,
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which is easily seen to be a ring homomorphism. Then the zero ideal
J of Q is maximal as Q is a field. But the inverse image I of J is the
zero ideal of Z which is not maximal, as Z is not a field.
6. (i) a|b if and only if b = ac, for some c ∈ R. Suppose that 〈b〉 ⊂ 〈a〉.
Then b ∈ 〈a〉, so that b = ac for some c ∈ R. Now suppose that b = ac.
Pick r ∈ 〈b〉. Then r = qb, for some q ∈ R. But then r = qb = (qc)a.
Thus r ∈ 〈a〉 and so 〈b〉 ⊂ 〈a〉.
(b) Immediate from (a), as two subsets A and B are equal if and only
if A ⊂ B and B ⊂ A.
(c) Clear, as R = 〈1〉 and an element a of R is an associate of 1 if and
only if it is a unit.
7. Suppose that p is prime and that p = ab, for a and b two elements
of R. Certainly p|(ab), so that either p|a or p|b. Suppose p|a. Then
a = pc. We have p = ab = p(bc). Cancelling, bc = 1 so that b is a unit.
Thus p is irreducible.
8. As d′ divides a and b, by the universal property of d, d′|d. By
symmetry d divides d′. But then d and d′ are associates.
9. It is convenient to introduce the norm, N(α), of any element α of

Z[
√
−5]. In fact it is not harder to do the general case Z[

√
d], where d

is any square-free integer. Given α = a+b
√
d, the norm is by definition

N(α) = a2 − b2d.

Using the well-known identity,

A2 −B2 = (A+B)(A−B),

note that the norm can be rewritten,

N(α) = (a+ b
√
d)(a− b

√
d) = αᾱ,

where ᾱ, known as the conjugate of α, is by definition a− b
√
d. Note

that in the case d < 0, in fact ᾱ is precisely the complex conjugate of
α. The key property of the norm, which may be checked easily, is that
it is multiplicative. Suppose that γ = αβ, then

N(γ) = N(α)N(β).

Indeed if α = a+ b
√
d and β = a′ + b′

√
d, then

γ = (aa′ + bb′d) + (a′b+ ab′)
√
d,

so that

N(γ) = (aa′ + bb′d)2 − d(a′b+ ab′)2

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab′)2
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On the other hand

N(α)N(β) = (a2 − b2d)((a′)2 − (b′)2d)

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab′)2

= N(γ).

We first use this to determine the units. Note that if α is a unit, then
there is an element β such that αβ = 1. Thus

N(α)N(β) = N(αβ) = N(1) = 1,

so that N(α) and N(β) are divisors of 1. Thus if α = a+ b
√
d is unit,

then a2 − b2d = ±1. Conversely, if the norm of α is ±1, then ∓ᾱ is
the inverse of α. It follows that the units are precisely those elements
whose norm is ±1.
(i) As d = −5, the units are precisely those elements α = a + b

√
−5

such that
a2 + 5b2 = 1.

The only possibilities are a = ±1, b = 0, so that α = ±1. Suppose
that 2 is not irreducible, so that 2 = αβ, where α and β are not units.
Then

4 = N(2) = N(α)N(β).

As α and β are not units, then N(α) and N(β) are greater than one.
It follows that N(α) = N(β) = 2. Suppose that

a2 + 5b2 = 2.

Then b = 0 and a = ±
√

2, not an integer. Thus 2 is irreducible. For 3,
the proof proceeds mutatis mutandis, with 2 replacing 3. The crucial
observation is that one cannot solve

a2 + 5b2 = 3.

where a and b are integers. For 1 +
√

5, observe that its norm is 6,
so that α and β are of norm 2 and 3, which we have already seen is
impossible.
(ii) It suffices to prove that every ascending chain of principal ideals
stabilises. But this is clear, since if

〈α〉 ⊂ 〈β〉,
then

N(β) ≤ N(α),

with equality in one equation if and only if there is equality for the
other. Thus a strictly increasing chain of principal ideals gives rise to a
strictly decreasing chain of natural numbers. Thus the set of principal
ideals satisfies the ACC as the set of natural numbers satisfies the DCC.
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(iii) By (i),
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5),

are two different factorisations of 6 into irreducibles.
10. (i) As R is a UFD, we may factor a and b as

a = upm1
1 pm2

2 · · · p
mk
k and b = vpn1

1 p
n2
2 · · · p

nk
k ,

where p1, p2, . . . , pk are primes, m1,m2, . . . ,mk and n1, n2, . . . , nk are
natural numbers, possibly zero, and u and v are units. Define

m = po11 p
o2
2 · · · p

ok
k

where oi is the maximum of mi and ni. It follows easily that a|m and
b|m.
Now suppose that a|m′ and b|m′. Then, possibly enlarging our list of
primes, we may assume that

m′ = wpr11 p
r2
2 · · · p

rk
k ,

where w is a unit and r1, r2, . . . , rk are positive integers. As a|m′, ri ≥
mi. Similarly as b|m′, ri ≥ ni. It follows that ri ≥ oi = max(mi, ni).
Thus m is indeed an lcm of a and b. Uniqueness of lcms’ up to asso-
ciates, follows as in the proof of uniqueness of gcd’s.
(ii) It suffices to prove this result for one choice of gcd d and one choice
of lcm m. Pick d as in class (that is, take the minimum exponent) and
take m as above (that is, the maximum exponent). In this case I claim
that dm = ab. It suffices to check this prime by prime, in which case
this becomes the simple rule,

m+ n = max(m,n) + min(m,n)

where m and n are integers.
11. Same definition as for rings.
12. I claim that S has unique factorisation if and only if v1, v2, . . . , vn
are independent as vectors in Q2. In particular if S has unique fac-
torisation then n ≤ 2 and if there are two vectors, then neither is a
multiple of the other.
Indeed suppose that we don’t have unique factorisation. Then there is
v ∈ Z2 such that,

v =
∑

aivi =
∑

bivi,

where ai 6= bi for some i and a1, a2, . . . , an and b1, b2, . . . , bn are positive
integers. Subtracting one side from the other, exhibits a linear depen-
dence between v1, v2, . . . , vn. Conversely, suppose that v1, v2, . . . , vn are
linearly dependent. Then we could find rational numbers c1, c2, . . . , cn,
not all zero, so that ∑

civi = 0.
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Separating into positive and negative parts, a1, a2, . . . , an and b1, b2, . . . , bn
and putting the negative part on the other side, we would have∑

aivi =
∑

bivi,

for some positive rational numbers a1, a2, . . . , an and b1, b2, . . . , bn. Mul-
tiplying through by a highly divisible positive integer, we could clear
denominators, so that a1, a2, . . . , an and b1, b2, . . . , bn are integers. But
then unique factorisation fails.
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