MODEL ANSWERS TO HWK \#9

1. It is proved in example 18.12 that M is maximal so that R / M is a field and so it suffices to prove that R / M has cardinality 9 . There are two, essentially equivalent, ways to proceed. The first is to observe that $a+b i$ and $c+d i$ generate the same left coset if and only if ($a-$ $c)+(b-d) i \in I$, that is 3 divides $a-c$ and 3 divides $b-d$. In turn, this is equivalent to saying that a and c (respectively b and d) have the same residue modulo 3 . As there are 3 residues modulo three, namely 0,1 and 2 , there are $9=3 \times 3$ left cosets, and R / M has cardinality 9 . The second way to proceed is to define a map

$$
\phi: \mathbb{Z}[i] \longrightarrow \mathbb{Z} \oplus \mathbb{Z}
$$

by sending $a+b i$ to (a, b). It is easy to check that this map is a group homomorphism (and just as easy to see that it is not a ring homomorphism). Under this correspondence, I corresponds to $3 \mathbb{Z} \oplus 3 \mathbb{Z}$ and so the cardinality of R / M is equal to the cardinality of

$$
\frac{\mathbb{Z} \oplus \mathbb{Z}}{3 \mathbb{Z} \oplus 3 \mathbb{Z}} \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
$$

which, as before, is $9=3 \times 3$.
2. (i) This set is clearly non-empty, and if a, b, c and d are integers then

$$
(a+b \sqrt{2})+(c+d \sqrt{2})=(a+b)+(c+d) \sqrt{2}
$$

so that R is closed under addition, and

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

so that it is closed under multiplication as well. Thus R is a subring of the real numbers.
(ii) Note that if a, b, c and d are divisible by 5 then $a+b$ and $c+d$ are divisible by 5 , so that M is closed under addition, and it is easy to see that it is closed under inverses. Similarly if a and b are divisible by 5 then $a c+2 b d$ and $a d+b c$ are divisible by 5 as well and so M is an ideal.
First note that, as $\sqrt{2}$ is irrational, then

$$
a+b \sqrt{2}=c+d \sqrt{2}
$$

if and only if $a=c$ and $b=d$. Indeed if $b=d$, then this is clear. Otherwise, we can solve for $\sqrt{2}$ to obtain

$$
\sqrt{2}=\frac{a-c}{d-b} \in \mathbb{Q},
$$

a contradiction. Thus the fact that R / M has 25 elements follows, as in question 1.
It remains to prove that M is maximal. Given two integers a and b, consider $a^{2}-2 b^{2}$. The key point to establish is that if 5 does not divide either a of b then it does not divide $a^{2}-2 b^{2}$. The squares modulo 5 are 0,1 and 4 , and multiplying by $3=-2 \bmod 5$ we get 0,3 and 2 . If we take the sum of one number from the first list and one number from the second, the only way to get a number congruent to zero modulo 5 , is to pick zero from both. The rest follows as in example 18.12.
3. Take I to be the set of all Gaussian integers of the form $a+b i$, where both a and b are divisible by 7 . The key point is that if 7 does not divide a, then 7 does not divide $a^{2}+b^{2}$. Indeed the squares modulo seven are $0,1,2$ and 4 , as can be seen by squaring $0,1,2$ and 3 (for the rest observe that $a^{2}=(-a)^{2}=(7-a)^{2}$, modulo seven). If a pair of these sum to a number divisible by 7 , then both of these numbers must be 0 , whence the result. The rest follows as in example 18.12.
4. We are told that I is an ideal. Suppose that J is any ideal of R, not equal to the whole of R. I claim that $J \subset I$. Suppose not. Then there is an element $a \in R$ such that $a \in J$ whilst $a \notin I$. By assumption, a is then a unit of R, so that there is an element $b \in R$ such that $a b=1$. Then $1=b a \in J$. Let c be an arbitrary element of R. Then $c=c \cdot 1 \in J$. Thus $J=R$, a contradiction. It follows easily that I is the unique maximal ideal.
5. (i) Replacing S by the image of ϕ, we may as well assume that ϕ is surjective. Let ψ denote the composition of ϕ and the natural map from S to S / J. Then the kernel of ψ is I. Thus I is an ideal of R. Moreover by the Isomorphism Theorem,

$$
\frac{R}{I} \simeq \frac{S}{J} .
$$

As J is prime, S / J is an integral domain. Thus R / I is also an integral domain and so I is prime.
(ii) The key point is to exhibit an ideal of a ring that is prime but not maximal. For example take the zero ideal in \mathbb{Z}. Consider the natural inclusion

$$
\phi: \mathbb{Z} \underset{2}{\longrightarrow} \mathbb{Q},
$$

which is easily seen to be a ring homomorphism. Then the zero ideal J of \mathbb{Q} is maximal as \mathbb{Q} is a field. But the inverse image I of J is the zero ideal of \mathbb{Z} which is not maximal, as \mathbb{Z} is not a field.
6. (i) $a \mid b$ if and only if $b=a c$, for some $c \in R$. Suppose that $\langle b\rangle \subset\langle a\rangle$. Then $b \in\langle a\rangle$, so that $b=a c$ for some $c \in R$. Now suppose that $b=a c$.
Pick $r \in\langle b\rangle$. Then $r=q b$, for some $q \in R$. But then $r=q b=(q c) a$. Thus $r \in\langle a\rangle$ and so $\langle b\rangle \subset\langle a\rangle$.
(b) Immediate from (a), as two subsets A and B are equal if and only if $A \subset B$ and $B \subset A$.
(c) Clear, as $R=\langle 1\rangle$ and an element a of R is an associate of 1 if and only if it is a unit.
7. Suppose that p is prime and that $p=a b$, for a and b two elements of R. Certainly $p \mid(a b)$, so that either $p \mid a$ or $p \mid b$. Suppose $p \mid a$. Then $a=p c$. We have $p=a b=p(b c)$. Cancelling, $b c=1$ so that b is a unit. Thus p is irreducible.
8. As d^{\prime} divides a and b, by the universal property of $d, d^{\prime} \mid d$. By symmetry d divides d^{\prime}. But then d and d^{\prime} are associates.
9. It is convenient to introduce the norm, $N(\alpha)$, of any element α of $\mathbb{Z}[\sqrt{-} 5]$. In fact it is not harder to do the general case $\mathbb{Z}[\sqrt{d}]$, where d is any square-free integer. Given $\alpha=a+b \sqrt{d}$, the norm is by definition

$$
N(\alpha)=a^{2}-b^{2} d
$$

Using the well-known identity,

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

note that the norm can be rewritten,

$$
N(\alpha)=(a+b \sqrt{d})(a-b \sqrt{d})=\alpha \bar{\alpha}
$$

where $\bar{\alpha}$, known as the conjugate of α, is by definition $a-b \sqrt{d}$. Note that in the case $d<0$, in fact $\bar{\alpha}$ is precisely the complex conjugate of α. The key property of the norm, which may be checked easily, is that it is multiplicative. Suppose that $\gamma=\alpha \beta$, then

$$
N(\gamma)=N(\alpha) N(\beta)
$$

Indeed if $\alpha=a+b \sqrt{d}$ and $\beta=a^{\prime}+b^{\prime} \sqrt{d}$, then

$$
\gamma=\left(a a^{\prime}+b b^{\prime} d\right)+\left(a^{\prime} b+a b^{\prime}\right) \sqrt{d}
$$

so that

$$
\begin{aligned}
N(\gamma) & =\left(a a^{\prime}+b b^{\prime} d\right)^{2}-d\left(a^{\prime} b+a b^{\prime}\right)^{2} \\
& =\left(a a^{\prime}\right)^{2}+\left(b b^{\prime}\right)^{2} d^{2}-d\left(a^{\prime} b\right)^{2}-d\left(a b^{\prime}\right)^{2}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
N(\alpha) N(\beta) & =\left(a^{2}-b^{2} d\right)\left(\left(a^{\prime}\right)^{2}-\left(b^{\prime}\right)^{2} d\right) \\
& =\left(a a^{\prime}\right)^{2}+\left(b b^{\prime}\right)^{2} d^{2}-d\left(a^{\prime} b\right)^{2}-d\left(a b^{\prime}\right)^{2} \\
& =N(\gamma) .
\end{aligned}
$$

We first use this to determine the units. Note that if α is a unit, then there is an element β such that $\alpha \beta=1$. Thus

$$
N(\alpha) N(\beta)=N(\alpha \beta)=N(1)=1,
$$

so that $N(\alpha)$ and $N(\beta)$ are divisors of 1 . Thus if $\alpha=a+b \sqrt{d}$ is unit, then $a^{2}-b^{2} d= \pm 1$. Conversely, if the norm of α is ± 1, then $\mp \bar{\alpha}$ is the inverse of α. It follows that the units are precisely those elements whose norm is ± 1.
(i) As $d=-5$, the units are precisely those elements $\alpha=a+b \sqrt{-5}$ such that

$$
a^{2}+5 b^{2}=1
$$

The only possibilities are $a= \pm 1, b=0$, so that $\alpha= \pm 1$. Suppose that 2 is not irreducible, so that $2=\alpha \beta$, where α and β are not units. Then

$$
4=N(2)=N(\alpha) N(\beta)
$$

As α and β are not units, then $N(\alpha)$ and $N(\beta)$ are greater than one. It follows that $N(\alpha)=N(\beta)=2$. Suppose that

$$
a^{2}+5 b^{2}=2
$$

Then $b=0$ and $a= \pm \sqrt{2}$, not an integer. Thus 2 is irreducible. For 3, the proof proceeds mutatis mutandis, with 2 replacing 3 . The crucial observation is that one cannot solve

$$
a^{2}+5 b^{2}=3
$$

where a and b are integers. For $1+\sqrt{5}$, observe that its norm is 6 , so that α and β are of norm 2 and 3 , which we have already seen is impossible.
(ii) It suffices to prove that every ascending chain of principal ideals stabilises. But this is clear, since if

$$
\langle\alpha\rangle \subset\langle\beta\rangle,
$$

then

$$
N(\beta) \leq N(\alpha),
$$

with equality in one equation if and only if there is equality for the other. Thus a strictly increasing chain of principal ideals gives rise to a strictly decreasing chain of natural numbers. Thus the set of principal ideals satisfies the ACC as the set of natural numbers satisfies the DCC.
(iii) By (i),

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

are two different factorisations of 6 into irreducibles.
10. (i) As R is a UFD, we may factor a and b as

$$
a=u p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}} \quad \text { and } \quad b=v p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are primes, $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ are natural numbers, possibly zero, and u and v are units. Define

$$
m=p_{1}^{o_{1}} p_{2}^{o_{2}} \cdots p_{k}^{o_{k}}
$$

where o_{i} is the maximum of m_{i} and n_{i}. It follows easily that $a \mid m$ and $b \mid m$.
Now suppose that $a \mid m^{\prime}$ and $b \mid m^{\prime}$. Then, possibly enlarging our list of primes, we may assume that

$$
m^{\prime}=w p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}
$$

where w is a unit and $r_{1}, r_{2}, \ldots, r_{k}$ are positive integers. As $a \mid m^{\prime}, r_{i} \geq$ m_{i}. Similarly as $b \mid m^{\prime}, r_{i} \geq n_{i}$. It follows that $r_{i} \geq o_{i}=\max \left(m_{i}, n_{i}\right)$. Thus m is indeed an lcm of a and b. Uniqueness of lcms' up to associates, follows as in the proof of uniqueness of gcd's.
(ii) It suffices to prove this result for one choice of gcd d and one choice of lcm m. Pick d as in class (that is, take the minimum exponent) and take m as above (that is, the maximum exponent). In this case I claim that $d m=a b$. It suffices to check this prime by prime, in which case this becomes the simple rule,

$$
m+n=\max (m, n)+\min (m, n)
$$

where m and n are integers.
11. Same definition as for rings.
12. I claim that S has unique factorisation if and only if $v_{1}, v_{2}, \ldots, v_{n}$ are independent as vectors in \mathbb{Q}^{2}. In particular if S has unique factorisation then $n \leq 2$ and if there are two vectors, then neither is a multiple of the other.
Indeed suppose that we don't have unique factorisation. Then there is $v \in \mathbb{Z}^{2}$ such that,

$$
v=\sum a_{i} v_{i}=\sum b_{i} v_{i},
$$

where $a_{i} \neq b_{i}$ for some i and $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are positive integers. Subtracting one side from the other, exhibits a linear dependence between $v_{1}, v_{2}, \ldots, v_{n}$. Conversely, suppose that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent. Then we could find rational numbers $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, so that

$$
\sum c_{i} v_{i}=0
$$

Separating into positive and negative parts, $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ and putting the negative part on the other side, we would have

$$
\sum a_{i} v_{i}=\sum b_{i} v_{i}
$$

for some positive rational numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Multiplying through by a highly divisible positive integer, we could clear denominators, so that $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are integers. But then unique factorisation fails.

