MODEL ANSWERS TO HWK #8

1. Suppose that r and $s \in L(a)$. Then ra = sa = 0 and so

$$(r+s)a = ra + sa = 0 + 0 = 0.$$

Thus $r + s \in L(a)$. Similarly $-r \in L(a)$ so that L(a) is an additive subgroup.

Now suppose that $r \in L(a)$ and $b \in R$. Then ra = 0 and so

$$(br)a = b(ra) = b0 = 0.$$

Thus $br \in L(a)$ and so L(a) is an ideal.

2. Let $a \in R$, $a \neq 0$. Then $I = \langle a \rangle$ is an ideal of R, and $I \neq \{0\}$ as $0 \neq a = 1 \cdot a \in R$. As the only ideals in R are $\{0\}$ and R, it follows that I = R. But then $1 \in I$ and so there is an element $b \in R$ such that $1 = ba \in I$. But then a is invertible and as a is arbitrary, R is a field. 3. (i) Note that $I \cap J$ is an additive subgroup, as I and J are both

additive subgroups. Suppose that $r \in R$ and $a \in I \cap J$. As $a \in I$ and I is an ideal, $ra \in I$. Similarly $ra \in J$. But then $ra \in I \cap J$. Similarly $ar \in I \cap J$ and so $I \cap J$ is an ideal.

(ii) As $0 \in I$ and $0 \in J$, it follows that $0 = 0 + 0 \in I + J$. In particular I + J is non-empty. Suppose that $x \in I + J$ and $y \in I + J$. Then x = a + b and y = c + d, where a and c are in I and b and d are in J. Then

$$x + y = (a + b) + (c + d)$$

= (a + c) + (b + d).

As $a + c \in I$ and $b + d \in J$, it follows that $x + y \in I + J$ and so I + J is closed under sums. Similarly I + J is closed under additive inverses. Now suppose that $x \in I + J$ and $r \in R$. Then

$$rx = r(a+b)$$
$$= ra + rb.$$

Thus $rx \in I + J$. Similarly $xr \in I + J$ and so I + J is an ideal. (iii) Suppose that $a \in R$. Then $a \in IJ$ if and only if a has the form $i_1j_1 + i_2j_2 + \cdots + i_kj_k$, where i_1, i_2, \ldots, i_k and j_1, j_2, \ldots, j_k are in I and J respectively. It is therefore clear that IJ is closed under addition and inverses and it is clear that IJ is non-empty (in fact IJ is the additive subgroup generated by products ij). Suppose that $r \in R$ and $a \in I$. Then

$$ra = r(i_1j_1 + i_2j_2 + \dots + i_kj_k) = (ri_1)j_1 + (ri_2)j_2 + \dots + (ri_k)j_k.$$

As $ri_p \in I$, for all all p, it follows that ra is in IJ. Similarly ar is in IJ, and so IJ is an ideal.

4. (i) Suppose that a and
$$b \in A$$
. Then $a' = \phi(a), b' = \phi(b) \in A'$. Thus

$$\phi(a+b) = \phi(a) + \phi(b)$$
$$= a' + b' \in A',$$

as A' is closed under addition. Thus $a + b \in A$ and A is closed under addition. Similarly A is closed under additive inverses and multiplication and A is non-empty, as it contains 0 for example. Thus A is a subring.

(ii) Define

$$\psi \colon A \longrightarrow A'$$

by $\psi(a) = \phi(a)$. Then ψ is clearly a surjective ring homomorphism. By definition $K \subset A$ and so it is clear that the kernel of ψ is K. Now apply the Isomorphism Theorem.

(iii) Suppose $r \in R$ and $a \in A$. Let $a' = \phi(a)$ and $r' = \phi(r)$. Then $a' \in A'$. Thus

$$\phi(ra) = \phi(r)\phi(a)$$
$$= r'a' \in A',$$

as we are assuming that A' is a left ideal. Thus $ra \in A$ and so A is a left ideal.

5. (i) R is clearly non-empty. If $a/b \in R$ and $c/d \in R$ then b and d are not divisible by p. We have

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$

As bd is not divisible by p, R is closed under sums and products and so R is a subring of \mathbb{Q} .

(ii) Define a map

$$\phi\colon R\longrightarrow \mathbb{Z}_p$$

by the rule

$$\phi(a/b) = [a][b]^{-1}.$$

Note that $[b] \neq 0$ as b is coprime to p and so taking the inverse of [b] makes sense. It is easy to check that ϕ is a surjective ring homomorphism. Moreover the kernel is clearly I. Thus the result follows by the Isomorphism Theorem.

6. Under addition, the set $R \oplus S$, with addition defined componentwise, is equal to the set $R \times S$, with addition defined componentwise. We have already seen that this is a group. It remains to check that we have a ring. It is easy to see that multiplication is associative and that (1, 1)plays the role of the identity; in fact just mimic the relevant steps of the proof that we have a group under addition.

Finally it remains to check the distributive law. Suppose that x = (a, b), y = (c, d), and $z = (e, f) \in R \oplus S$. Then

$$\begin{aligned} x(y+z) &= (a,b) \left((c,d) + (e,f) \right) \\ &= (a,b)(c+e,d+f) \\ &= (a(c+e),b(d+f)) \\ &= (ac+ae,bd+bf) \\ &= (ac+ae,bd+bf) \\ &= (ac,bd) + (ae,bf) \\ &= (a,b)(c,d) + (a,b)(e,f) \\ &= xy + xz. \end{aligned}$$

Thus the distributive law holds.

Define a map $\phi: R \oplus S \longrightarrow S$ be sending (r, s) to s. As we already saw this is a group homomorphism, of the underlying additive groups. It remains to check what happens under multiplication, but the proof is obviously the same as checking addition. Thus ϕ is a ring homorphism. The kernel is obviously

$$I = \{ (r, 0) \mid r \in R \}$$

In particular I is an ideal. Consider the map $\psi \colon R \longrightarrow R \oplus S$ such that $\psi(r) = (r, 0)$. This is obviously a bijection with I and it was already checked that it is a group homomorphism. It is easy to see that in fact ψ is also a ring homomorphism.

The rest follows by symmetry.

7. (i) As R is a subset of the 2×2 matrices, it suffices to check that R is non-empty (clear as R contains the zero matrix), closed under addition and inverses (easy check) and closed under multiplication. Suppose A and B are two matrices in R. Then

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \qquad B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}$$

for some a, b, c, a', b' and $c' \in \mathbb{R}$. Then

$$AB = \begin{pmatrix} aa' & ab' + a'b \\ 0 & cc' \end{pmatrix}.$$

Thus $AB \in R$ and R is indeed a ring.

Another, slightly more sophisticated, way to solve this problem is as follows. Matrices in R correspond to linear maps

$$\phi\colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

such that the vector $e_2 = (0, 1)$ is an eigenvalue of ϕ , that is $\phi(e_2) = ce_2$. With this description of R, it is very easy to see that R is an additive subgroup of 2×2 matrices and that it is closed under multiplication. (ii) I is clearly non-empty and closed under addition, so that I is an additive subgroup. Now suppose $A \in R$ and $B \in I$, so that

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \qquad B = \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix}.$$

Then

$$AB = \begin{pmatrix} 0 & ad \\ 0 & 0 \end{pmatrix},$$

and

$$BA = \begin{pmatrix} 0 & cd \\ 0 & 0 \end{pmatrix}.$$

Thus both AB and BA are in I. It follows that I is an ideal. Again, another way to see this is to state that I corresponds to all transformations ϕ of \mathbb{R}^2 , such that $\phi(e_1) = be_2$ and e_2 is in the kernel of ϕ . The fact that I is an ideal then follows readily. (iii) Define a map

by sending

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

 $\phi\colon R\longrightarrow \mathbb{R}\oplus \mathbb{R}$

to the vector $(a, c) \in \mathbb{R} \oplus \mathbb{R}$. We first check that ϕ is a ring homomorphism. It is not hard to see that ϕ respects addition, so that if A and B are in R then $\phi(A + B) = \phi(A) + \phi(B)$. We check multiplication. We use the notation as in (1). Then

$$\phi(AB) = (aa', bb')$$
$$= (a, b)(a', b')$$
$$= \phi(A)\phi(B).$$

Thus ϕ is certainly a ring homomorphism. It is also clearly surjective and the kernel is equal to I (thereby providing a different proof that Iis an ideal). The result follows by the Isomorphism Theorem.

9. The fact that the map ϕ is a ring homomorphism follows immediately from the universal property of $R \oplus S$. Now suppose that $r \in \text{Ker }\phi$. Then r + I = I, so that $r \in I$ and similarly $r \in J$. Thus $r \in I \cap J$. Thus Ker $\phi \subset I \cap J$. The reverse inclusion is just as easy to prove. Thus Ker $\phi = I \cap J$.

10. (i) Clearly a multiple of mn is a multiple of m and a multiple of n so that $I_{mn} \subset I_m \cap I_n$. Now suppose that $a \in I_m \cap I_n$. Then a = bm and a = cn. As m and n are coprime, by Euclid's algorithm, there are two integers r and s such that

$$1 = rm + sn.$$

Multiplying by a, we have

$$a = rma + sna$$

= (rc)mn + (sb)mn
= (rc + sb)mn,

Thus $a \in I_{mn}$ and so $I_{mn} = I_m \cap I_n$.

(ii) Apply question 9 to $R = \mathbb{Z}$. It follows that there is a ring homomorphism

$$\phi \colon \mathbb{Z} \longrightarrow \mathbb{Z}/I_m \oplus \mathbb{Z}/I_n$$

such that $I_m \cap I_n = I_{mn}$ is the kernel. Thus, by the Isomorphism Theorem, there is an injective ring homomorphism

$$\psi\colon \mathbb{Z}/I_{mn} \longrightarrow \mathbb{Z}/I_m \oplus \mathbb{Z}/I_n$$

(iii) By (ii) ψ is an injective ring homomorphism. On the other hand, both the domain and the range have cardinality mn. It follows that ψ is in fact an isomorphism.

11 Note that if 3 does not divide a, then either a is congruent to 1 or 2 modulo 3. Either way a^2 is congruent to $1 = 1^2 = 2^2$ modulo three. In this case $a^2 + b^2$ is congruent to either 1 = 1 + 0 or 2 = 1 + 1, modulo three. Thus 3 does not divide $a^2 + b^2$.

12. **Challenge Problem:** Let $f_i: S \longrightarrow R$ be the projection of S onto the *i*th (counting left to right and then top to bottom), for i = 1, 2, 3 and 4. Denote by J_i the projection of I to R, via f_i . Suppose that $a \in J_1$, so that there is a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I.$$

Multiplying on the left and right by

we see that

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} a & 0 \\ 0 & 0 \\ 5 \end{pmatrix} \in I.$$

Now multiply by

$$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

on the left to conclude that

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in I.$$

By symmetry, we conclude that $J_i = J$ is independent of i and as I is an additive subgroup, that I consists of all matrices with entries in J. It remains to prove that J is an ideal. It is clear that J is an additive subgroup. On the other hand if $a \in J$ and $r \in R$, then

$$A = \begin{pmatrix} a & 0\\ 0 & 0 \end{pmatrix} \in I$$

and

$$B = \begin{pmatrix} r & 0\\ 0 & 0 \end{pmatrix} \in S.$$

Thus

$$BA = \begin{pmatrix} ra & 0\\ 0 & 0 \end{pmatrix} \in I,$$

and so $ra \in J$. Similarly $ar \in J$ and so J is indeed an ideal.

13. Challenge Problem: Denote by m the product of the primes p_1, p_2, \ldots, p_n . Then we want to know the number of solutions of $x^2 = x$ inside the ring $R = \mathbb{Z}_m$. By repeated application of the Chinese Remainder Theorem,

$$\mathbb{Z}_m \simeq \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \mathbb{Z}_{p_3} \oplus \cdots \mathbb{Z}_{p_n}.$$

As multiplication is computed component by component on the RHS, solving the equation $x^2 = x$, is equivalent to solving the *n* equations $x^2 = x$ in the *n* rings \mathbb{Z}_{p_i} and taking the product. Now x = 0 is always a solution of $x^2 = x$. So if *m* is prime and $x \neq 0$, $x^2 = x$, then multiplying by the inverse of *x*, we have x = 1. Thus, prime by prime, there are two solutions, making a total of 2^n solutions in *R*.