MODEL ANSWERS TO HWK \#8

1. Suppose that r and $s \in L(a)$. Then $r a=s a=0$ and so

$$
(r+s) a=r a+s a=0+0=0 .
$$

Thus $r+s \in L(a)$. Similarly $-r \in L(a)$ so that $L(a)$ is an additive subgroup.
Now suppose that $r \in L(a)$ and $b \in R$. Then $r a=0$ and so

$$
(b r) a=b(r a)=b 0=0 .
$$

Thus $b r \in L(a)$ and so $L(a)$ is an ideal.
2. Let $a \in R, a \neq 0$. Then $I=\langle a\rangle$ is an ideal of R, and $I \neq\{0\}$ as $0 \neq a=1 \cdot a \in R$. As the only ideals in R are $\{0\}$ and R, it follows that $I=R$. But then $1 \in I$ and so there is an element $b \in R$ such that $1=b a \in I$. But then a is invertible and as a is arbitrary, R is a field. 3. (i) Note that $I \cap J$ is an additive subgroup, as I and J are both additive subgroups. Suppose that $r \in R$ and $a \in I \cap J$. As $a \in I$ and I is an ideal, $r a \in I$. Similarly $r a \in J$. But then $r a \in I \cap J$. Similarly ar $\in I \cap J$ and so $I \cap J$ is an ideal.
(ii) As $0 \in I$ and $0 \in J$, it follows that $0=0+0 \in I+J$. In particular $I+J$ is non-empty. Suppose that $x \in I+J$ and $y \in I+J$. Then $x=a+b$ and $y=c+d$, where a and c are in I and b and d are in J. Then

$$
\begin{aligned}
x+y & =(a+b)+(c+d) \\
& =(a+c)+(b+d) .
\end{aligned}
$$

As $a+c \in I$ and $b+d \in J$, it follows that $x+y \in I+J$ and so $I+J$ is closed under sums. Similarly $I+J$ is closed under additive inverses. Now suppose that $x \in I+J$ and $r \in R$. Then

$$
\begin{aligned}
r x & =r(a+b) \\
& =r a+r b .
\end{aligned}
$$

Thus $r x \in I+J$. Similarly $x r \in I+J$ and so $I+J$ is an ideal.
(iii) Suppose that $a \in R$. Then $a \in I J$ if and only if a has the form $i_{1} j_{1}+i_{2} j_{2}+\cdots+i_{k} j_{k}$, where $i_{1}, i_{2}, \ldots, i_{k}$ and $j_{1}, j_{2}, \ldots, j_{k}$ are in I and J respectively. It is therefore clear that $I J$ is closed under addition and inverses and it is clear that $I J$ is non-empty (in fact $I J$ is the additive subgroup generated by products $i j$).

Suppose that $r \in R$ and $a \in I$. Then

$$
\begin{aligned}
r a & =r\left(i_{1} j_{1}+i_{2} j_{2}+\cdots+i_{k} j_{k}\right) \\
& =\left(r i_{1}\right) j_{1}+\left(r i_{2}\right) j_{2}+\cdots+\left(r i_{k}\right) j_{k} .
\end{aligned}
$$

As $r i_{p} \in I$, for all all p, it follows that $r a$ is in $I J$. Similarly $a r$ is in $I J$, and so $I J$ is an ideal.
4. (i) Suppose that a and $b \in A$. Then $a^{\prime}=\phi(a), b^{\prime}=\phi(b) \in A^{\prime}$. Thus

$$
\begin{aligned}
\phi(a+b) & =\phi(a)+\phi(b) \\
& =a^{\prime}+b^{\prime} \in A^{\prime}
\end{aligned}
$$

as A^{\prime} is closed under addition. Thus $a+b \in A$ and A is closed under addition. Similarly A is closed under additive inverses and multiplication and A is non-empty, as it contains 0 for example. Thus A is a subring.
(ii) Define

$$
\psi: A \longrightarrow A^{\prime}
$$

by $\psi(a)=\phi(a)$. Then ψ is clearly a surjective ring homomorphism. By definition $K \subset A$ and so it is clear that the kernel of ψ is K. Now apply the Isomorphism Theorem.
(iii) Suppose $r \in R$ and $a \in A$. Let $a^{\prime}=\phi(a)$ and $r^{\prime}=\phi(r)$. Then $a^{\prime} \in A^{\prime}$. Thus

$$
\begin{aligned}
\phi(r a) & =\phi(r) \phi(a) \\
& =r^{\prime} a^{\prime} \in A^{\prime},
\end{aligned}
$$

as we are assuming that A^{\prime} is a left ideal. Thus $r a \in A$ and so A is a left ideal.
5. (i) R is clearly non-empty. If $a / b \in R$ and $c / d \in R$ then b and d are not divisible by p. We have

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \frac{c}{d}=\frac{a c}{b d} .
$$

As $b d$ is not divisible by p, R is closed under sums and products and so R is a subring of \mathbb{Q}.
(ii) Define a map

$$
\phi: R \longrightarrow \mathbb{Z}_{p}
$$

by the rule

$$
\phi(a / b)=[a][b]^{-1} .
$$

Note that $[b] \neq 0$ as b is coprime to p and so taking the inverse of $[b]$ makes sense. It is easy to check that ϕ is a surjective ring homomorphism. Moreover the kernel is clearly I. Thus the result follows by the Isomorphism Theorem.
6. Under addition, the set $R \oplus S$, with addition defined componentwise, is equal to the set $R \times S$, with addition defined componentwise. We have already seen that this is a group. It remains to check that we have a ring. It is easy to see that multiplication is associative and that $(1,1)$ plays the role of the identity; in fact just mimic the relevant steps of the proof that we have a group under addition.
Finally it remains to check the distributive law. Suppose that $x=$ $(a, b), y=(c, d)$, and $z=(e, f) \in R \oplus S$. Then

$$
\begin{aligned}
x(y+z) & =(a, b)((c, d)+(e, f)) \\
& =(a, b)(c+e, d+f) \\
& =(a(c+e), b(d+f)) \\
& =(a c+a e, b d+b f) \\
& =(a c+a e, b d+b f) \\
& =(a c, b d)+(a e, b f) \\
& =(a, b)(c, d)+(a, b)(e, f) \\
& =x y+x z .
\end{aligned}
$$

Thus the distributive law holds.
Define a map $\phi: R \oplus S \longrightarrow S$ be sending (r, s) to s. As we already saw this is a group homomorphism, of the underlying additive groups. It remains to check what happens under multiplication, but the proof is obviously the same as checking addition. Thus ϕ is a ring homorphism. The kernel is obviously

$$
I=\{(r, 0) \mid r \in R\} .
$$

In particular I is an ideal. Consider the map $\psi: R \longrightarrow R \oplus S$ such that $\psi(r)=(r, 0)$. This is obviously a bijection with I and it was already checked that it is a group homomorphism. It is easy to see that in fact ψ is also a ring homomorphism.
The rest follows by symmetry.
7. (i) As R is a subset of the 2×2 matrices, it suffices to check that R is non-empty (clear as R contains the zero matrix), closed under addition and inverses (easy check) and closed under multiplication. Suppose A and B are two matrices in R. Then

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \quad B=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & c^{\prime}
\end{array}\right)
$$

for some $a, b, c, a^{\prime}, b^{\prime}$ and $c^{\prime} \in \mathbb{R}$. Then

$$
A B=\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+a^{\prime} b \\
0 & c c^{\prime}
\end{array}\right)
$$

Thus $A B \in R$ and R is indeed a ring.
Another, slightly more sophisticated, way to solve this problem is as follows. Matrices in R correspond to linear maps

$$
\phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

such that the vector $e_{2}=(0,1)$ is an eigenvalue of ϕ, that is $\phi\left(e_{2}\right)=c e_{2}$. With this description of R, it is very easy to see that R is an additive subgroup of 2×2 matrices and that it is closed under multiplication.
(ii) I is clearly non-empty and closed under addition, so that I is an additive subgroup. Now suppose $A \in R$ and $B \in I$, so that

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{cc}
0 & a d \\
0 & 0
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{cc}
0 & c d \\
0 & 0
\end{array}\right)
$$

Thus both $A B$ and $B A$ are in I. It follows that I is an ideal.
Again, another way to see this is to state that I corresponds to all transformations ϕ of \mathbb{R}^{2}, such that $\phi\left(e_{1}\right)=b e_{2}$ and e_{2} is in the kernel of ϕ. The fact that I is an ideal then follows readily.
(iii) Define a map

$$
\phi: R \longrightarrow \mathbb{R} \oplus \mathbb{R}
$$

by sending

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

to the vector $(a, c) \in \mathbb{R} \oplus \mathbb{R}$. We first check that ϕ is a ring homomorphism. It is not hard to see that ϕ respects addition, so that if A and B are in R then $\phi(A+B)=\phi(A)+\phi(B)$. We check multiplication. We use the notation as in (1). Then

$$
\begin{aligned}
\phi(A B) & =\left(a a^{\prime}, b b^{\prime}\right) \\
& =(a, b)\left(a^{\prime}, b^{\prime}\right) \\
& =\phi(A) \phi(B) .
\end{aligned}
$$

Thus ϕ is certainly a ring homomorphism. It is also clearly surjective and the kernel is equal to I (thereby providing a different proof that I is an ideal). The result follows by the Isomorphism Theorem.
9. The fact that the map ϕ is a ring homomorphism follows immediately from the universal property of $R \oplus S$. Now suppose that $r \in \operatorname{Ker} \phi$. Then $r+I=I$, so that $r \in I$ and similarly $r \in J$. Thus $r \in I \cap J$.

Thus $\operatorname{Ker} \phi \subset I \cap J$. The reverse inclusion is just as easy to prove. Thus Ker $\phi=I \cap J$.
10. (i) Clearly a multiple of $m n$ is a multiple of m and a multiple of n so that $I_{m n} \subset I_{m} \cap I_{n}$. Now suppose that $a \in I_{m} \cap I_{n}$. Then $a=b m$ and $a=c n$. As m and n are coprime, by Euclid's algorithm, there are two integers r and s such that

$$
1=r m+s n
$$

Multiplying by a, we have

$$
\begin{aligned}
a & =r m a+s n a \\
& =(r c) m n+(s b) m n \\
& =(r c+s b) m n,
\end{aligned}
$$

Thus $a \in I_{m n}$ and so $I_{m n}=I_{m} \cap I_{n}$.
(ii) Apply question 9 to $R=\mathbb{Z}$. It follows that there is a ring homomorphism

$$
\phi: \mathbb{Z} \longrightarrow \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}
$$

such that $I_{m} \cap I_{n}=I_{m n}$ is the kernel. Thus, by the Isomorphism Theorem, there is an injective ring homomorphism

$$
\psi: \mathbb{Z} / I_{m n} \longrightarrow \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}
$$

(iii) By (ii) ψ is an injective ring homomorphism. On the other hand, both the domain and the range have cardinality $m n$. It follows that ψ is in fact an isomorphism.
11 Note that if 3 does not divide a, then either a is congruent to 1 or 2 modulo 3. Either way a^{2} is congruent to $1=1^{2}=2^{2}$ modulo three. In this case $a^{2}+b^{2}$ is congruent to either $1=1+0$ or $2=1+1$, modulo three. Thus 3 does not divide $a^{2}+b^{2}$.
12. Challenge Problem: Let $f_{i}: S \longrightarrow R$ be the projection of S onto the i th (counting left to right and then top to bottom), for $i=1$, 2,3 and 4 . Denote by J_{i} the projection of I to R, via f_{i}. Suppose that $a \in J_{1}$, so that there is a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in I
$$

Multiplying on the left and right by

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

we see that

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \in I .
$$

Now multiply by

$$
B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

on the left to conclude that

$$
\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right) \in I .
$$

By symmetry, we conclude that $J_{i}=J$ is independent of i and as I is an additive subgroup, that I consists of all matrices with entries in J. It remains to prove that J is an ideal. It is clear that J is an additive subgroup. On the other hand if $a \in J$ and $r \in R$, then

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \in I
$$

and

$$
B=\left(\begin{array}{ll}
r & 0 \\
0 & 0
\end{array}\right) \in S
$$

Thus

$$
B A=\left(\begin{array}{cc}
r a & 0 \\
0 & 0
\end{array}\right) \in I
$$

and so $r a \in J$. Similarly $a r \in J$ and so J is indeed an ideal.
13. Challenge Problem: Denote by m the product of the primes $p_{1}, p_{2}, \ldots, p_{n}$. Then we want to know the number of solutions of $x^{2}=$ x inside the ring $R=\mathbb{Z}_{m}$. By repeated application of the Chinese Remainder Theorem,

$$
\mathbb{Z}_{m} \simeq \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \mathbb{Z}_{p_{3}} \oplus \cdots \mathbb{Z}_{p_{n}}
$$

As multiplication is computed component by component on the RHS, solving the equation $x^{2}=x$, is equivalent to solving the n equations $x^{2}=x$ in the n rings $\mathbb{Z}_{p_{i}}$ and taking the product. Now $x=0$ is always a solution of $x^{2}=x$. So if m is prime and $x \neq 0, x^{2}=x$, then multiplying by the inverse of x, we have $x=1$. Thus, prime by prime, there are two solutions, making a total of 2^{n} solutions in R.

