
MODEL ANSWERS TO HWK #8

1. Suppose that r and s ∈ L(a). Then ra = sa = 0 and so

(r + s)a = ra+ sa = 0 + 0 = 0.

Thus r + s ∈ L(a). Similarly −r ∈ L(a) so that L(a) is an additive
subgroup.
Now suppose that r ∈ L(a) and b ∈ R. Then ra = 0 and so

(br)a = b(ra) = b0 = 0.

Thus br ∈ L(a) and so L(a) is an ideal.
2. Let a ∈ R, a 6= 0. Then I = 〈a〉 is an ideal of R, and I 6= {0} as
0 6= a = 1 · a ∈ R. As the only ideals in R are {0} and R, it follows
that I = R. But then 1 ∈ I and so there is an element b ∈ R such that
1 = ba ∈ I. But then a is invertible and as a is arbitrary, R is a field.
3. (i) Note that I ∩ J is an additive subgroup, as I and J are both
additive subgroups. Suppose that r ∈ R and a ∈ I ∩ J . As a ∈ I and
I is an ideal, ra ∈ I. Similarly ra ∈ J . But then ra ∈ I ∩ J . Similarly
ar ∈ I ∩ J and so I ∩ J is an ideal.
(ii) As 0 ∈ I and 0 ∈ J , it follows that 0 = 0 + 0 ∈ I + J . In particular
I + J is non-empty. Suppose that x ∈ I + J and y ∈ I + J . Then
x = a + b and y = c + d, where a and c are in I and b and d are in J .
Then

x+ y = (a+ b) + (c+ d)

= (a+ c) + (b+ d).

As a+ c ∈ I and b+ d ∈ J , it follows that x+ y ∈ I + J and so I + J
is closed under sums. Similarly I + J is closed under additive inverses.
Now suppose that x ∈ I + J and r ∈ R. Then

rx = r(a+ b)

= ra+ rb.

Thus rx ∈ I + J . Similarly xr ∈ I + J and so I + J is an ideal.
(iii) Suppose that a ∈ R. Then a ∈ IJ if and only if a has the form
i1j1 + i2j2 + · · ·+ ikjk, where i1, i2, . . . , ik and j1, j2, . . . , jk are in I and
J respectively. It is therefore clear that IJ is closed under addition and
inverses and it is clear that IJ is non-empty (in fact IJ is the additive
subgroup generated by products ij).
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Suppose that r ∈ R and a ∈ I. Then

ra = r(i1j1 + i2j2 + · · ·+ ikjk)

= (ri1)j1 + (ri2)j2 + · · ·+ (rik)jk.

As rip ∈ I, for all all p, it follows that ra is in IJ . Similarly ar is in
IJ , and so IJ is an ideal.
4. (i) Suppose that a and b ∈ A. Then a′ = φ(a), b′ = φ(b) ∈ A′. Thus

φ(a+ b) = φ(a) + φ(b)

= a′ + b′ ∈ A′,
as A′ is closed under addition. Thus a + b ∈ A and A is closed under
addition. Similarly A is closed under additive inverses and multiplica-
tion and A is non-empty, as it contains 0 for example. Thus A is a
subring.
(ii) Define

ψ : A −→ A′

by ψ(a) = φ(a). Then ψ is clearly a surjective ring homomorphism.
By definition K ⊂ A and so it is clear that the kernel of ψ is K. Now
apply the Isomorphism Theorem.
(iii) Suppose r ∈ R and a ∈ A. Let a′ = φ(a) and r′ = φ(r). Then
a′ ∈ A′. Thus

φ(ra) = φ(r)φ(a)

= r′a′ ∈ A′,
as we are assuming that A′ is a left ideal. Thus ra ∈ A and so A is a
left ideal.
5. (i) R is clearly non-empty. If a/b ∈ R and c/d ∈ R then b and d are
not divisible by p. We have

a

b
+
c

d
=
ad+ bc

bd
and

a

b

c

d
=
ac

bd
.

As bd is not divisible by p, R is closed under sums and products and
so R is a subring of Q.
(ii) Define a map

φ : R −→ Zp

by the rule
φ(a/b) = [a][b]−1.

Note that [b] 6= 0 as b is coprime to p and so taking the inverse of [b]
makes sense. It is easy to check that φ is a surjective ring homomor-
phism. Moreover the kernel is clearly I. Thus the result follows by the
Isomorphism Theorem.
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6. Under addition, the set R⊕S, with addition defined componentwise,
is equal to the set R × S, with addition defined componentwise. We
have already seen that this is a group. It remains to check that we have
a ring. It is easy to see that multiplication is associative and that (1, 1)
plays the role of the identity; in fact just mimic the relevant steps of
the proof that we have a group under addition.
Finally it remains to check the distributive law. Suppose that x =
(a, b), y = (c, d), and z = (e, f) ∈ R⊕ S. Then

x(y + z) = (a, b) ((c, d) + (e, f))

= (a, b)(c+ e, d+ f)

= (a(c+ e), b(d+ f))

= (ac+ ae, bd+ bf)

= (ac+ ae, bd+ bf)

= (ac, bd) + (ae, bf)

= (a, b)(c, d) + (a, b)(e, f)

= xy + xz.

Thus the distributive law holds.
Define a map φ : R⊕S −→ S be sending (r, s) to s. As we already saw
this is a group homomorphism, of the underlying additive groups. It
remains to check what happens under multiplication, but the proof is
obviously the same as checking addition. Thus φ is a ring homorphism.
The kernel is obviously

I = { (r, 0) | r ∈ R }.
In particular I is an ideal. Consider the map ψ : R −→ R⊕S such that
ψ(r) = (r, 0). This is obviously a bijection with I and it was already
checked that it is a group homomorphism. It is easy to see that in fact
ψ is also a ring homomorphism.
The rest follows by symmetry.
7. (i) As R is a subset of the 2×2 matrices, it suffices to check that R is
non-empty (clear as R contains the zero matrix), closed under addition
and inverses (easy check) and closed under multiplication. Suppose A
and B are two matrices in R. Then

A =

(
a b
0 c

)
B =

(
a′ b′

0 c′

)
for some a, b, c, a′, b′ and c′ ∈ R. Then

AB =

(
aa′ ab′ + a′b
0 cc′

)
.
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Thus AB ∈ R and R is indeed a ring.
Another, slightly more sophisticated, way to solve this problem is as
follows. Matrices in R correspond to linear maps

φ : R2 −→ R2

such that the vector e2 = (0, 1) is an eigenvalue of φ, that is φ(e2) = ce2.
With this description of R, it is very easy to see that R is an additive
subgroup of 2× 2 matrices and that it is closed under multiplication.
(ii) I is clearly non-empty and closed under addition, so that I is an
additive subgroup. Now suppose A ∈ R and B ∈ I, so that

A =

(
a b
0 c

)
B =

(
0 d
0 0

)
.

Then

AB =

(
0 ad
0 0

)
,

and

BA =

(
0 cd
0 0

)
.

Thus both AB and BA are in I. It follows that I is an ideal.
Again, another way to see this is to state that I corresponds to all
transformations φ of R2, such that φ(e1) = be2 and e2 is in the kernel
of φ. The fact that I is an ideal then follows readily.
(iii) Define a map

φ : R −→ R⊕ R
by sending

A =

(
a b
0 c

)
to the vector (a, c) ∈ R⊕R. We first check that φ is a ring homomor-
phism. It is not hard to see that φ respects addition, so that if A and
B are in R then φ(A + B) = φ(A) + φ(B). We check multiplication.
We use the notation as in (1). Then

φ(AB) = (aa′, bb′)

= (a, b)(a′, b′)

= φ(A)φ(B).

Thus φ is certainly a ring homomorphism. It is also clearly surjective
and the kernel is equal to I (thereby providing a different proof that I
is an ideal). The result follows by the Isomorphism Theorem.
9. The fact that the map φ is a ring homomorphism follows immediately
from the universal property of R ⊕ S. Now suppose that r ∈ Kerφ.
Then r + I = I, so that r ∈ I and similarly r ∈ J . Thus r ∈ I ∩ J .
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Thus Kerφ ⊂ I ∩ J . The reverse inclusion is just as easy to prove.
Thus Kerφ = I ∩ J .
10. (i) Clearly a multiple of mn is a multiple of m and a multiple of n
so that Imn ⊂ Im ∩ In. Now suppose that a ∈ Im ∩ In. Then a = bm
and a = cn. As m and n are coprime, by Euclid’s algorithm, there are
two integers r and s such that

1 = rm+ sn.

Multiplying by a, we have

a = rma+ sna

= (rc)mn+ (sb)mn

= (rc+ sb)mn,

Thus a ∈ Imn and so Imn = Im ∩ In.
(ii) Apply question 9 to R = Z. It follows that there is a ring homo-
morphism

φ : Z −→ Z/Im ⊕ Z/In,
such that Im ∩ In = Imn is the kernel. Thus, by the Isomorphism
Theorem, there is an injective ring homomorphism

ψ : Z/Imn −→ Z/Im ⊕ Z/In.
(iii) By (ii) ψ is an injective ring homomorphism. On the other hand,
both the domain and the range have cardinality mn. It follows that ψ
is in fact an isomorphism.
11 Note that if 3 does not divide a, then either a is congruent to 1 or 2
modulo 3. Either way a2 is congruent to 1 = 12 = 22 modulo three. In
this case a2 + b2 is congruent to either 1 = 1 + 0 or 2 = 1 + 1, modulo
three. Thus 3 does not divide a2 + b2.
12. Challenge Problem: Let fi : S −→ R be the projection of S
onto the ith (counting left to right and then top to bottom), for i = 1,
2, 3 and 4. Denote by Ji the projection of I to R, via fi. Suppose that
a ∈ J1, so that there is a matrix

A =

(
a b
c d

)
∈ I.

Multiplying on the left and right by

B =

(
1 0
0 0

)
,

we see that (
a 0
0 0

)
∈ I.
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Now multiply by

B =

(
0 0
1 0

)
,

on the left to conclude that (
0 a
0 0

)
∈ I.

By symmetry, we conclude that Ji = J is independent of i and as I is
an additive subgroup, that I consists of all matrices with entries in J .
It remains to prove that J is an ideal. It is clear that J is an additive
subgroup. On the other hand if a ∈ J and r ∈ R, then

A =

(
a 0
0 0

)
∈ I

and

B =

(
r 0
0 0

)
∈ S.

Thus

BA =

(
ra 0
0 0

)
∈ I,

and so ra ∈ J . Similarly ar ∈ J and so J is indeed an ideal.
13. Challenge Problem: Denote by m the product of the primes
p1, p2, . . . , pn. Then we want to know the number of solutions of x2 =
x inside the ring R = Zm. By repeated application of the Chinese
Remainder Theorem,

Zm ' Zp1 ⊕ Zp2 ⊕ Zp3 ⊕ · · ·Zpn .

As multiplication is computed component by component on the RHS,
solving the equation x2 = x, is equivalent to solving the n equations
x2 = x in the n rings Zpi and taking the product. Now x = 0 is
always a solution of x2 = x. So if m is prime and x 6= 0, x2 = x, then
multiplying by the inverse of x, we have x = 1. Thus, prime by prime,
there are two solutions, making a total of 2n solutions in R.
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