MODEL ANSWERS TO HWK #8

1. Suppose that r and s € L(a). Then ra = sa = 0 and so
(r+s)ja=ra+sa=0+0=0.

Thus 7 + s € L(a). Similarly —r € L(a) so that L(a) is an additive
subgroup.
Now suppose that r € L(a) and b € R. Then ra = 0 and so

(br)a = b(ra) = b0 = 0.

Thus br € L(a) and so L(a) is an ideal.

2. Let a € R, a # 0. Then I = (a) is an ideal of R, and I # {0} as
0#a=1-a € R. As the only ideals in R are {0} and R, it follows
that / = R. But then 1 € I and so there is an element b € R such that
1 =ba € I. But then a is invertible and as a is arbitrary, R is a field.
3. (i) Note that I N J is an additive subgroup, as I and J are both
additive subgroups. Suppose that r € Randa € INJ. Asa € I and
I is an ideal, ra € I. Similarly ra € J. But then ra € I N J. Similarly
ar € I'NJ and so I NJ is an ideal.

(i) As0 € I and 0 € J, it follows that 0 = 0+0 € I+ J. In particular
I + J is non-empty. Suppose that x € I + J and y € I + J. Then
xr=a+band y = c+ d, where a and c are in [ and b and d are in J.
Then

r+y=(a+0b)+(c+d)
=(a+c)+ (b+4d).

Asa+celandb+d e J, it follows that t +y € I+ J and so [ + J
is closed under sums. Similarly I + J is closed under additive inverses.
Now suppose that x € I + J and r € R. Then

re=r(a+b)
=ra-+rb.

Thus rx € [ 4+ J. Similarly zr € I + J and so I + J is an ideal.

(ili) Suppose that @ € R. Then a € I.J if and only if @ has the form
il,jl +?:2j2 -+ +Zk,]k7 where il, iz, . ,’ik and j17.j27 Ce 7,jk are in [ and
J respectively. It is therefore clear that I.J is closed under addition and
inverses and it is clear that /.J is non-empty (in fact I.J is the additive

subgroup generated by products ij).
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Suppose that » € R and a € I. Then
ra =r(i1j1 +i2J2 + -+ + ik Jk)
= (riy)j1 + (ria)ja + - + (rig) Ja-
As ri, € I, for all all p, it follows that ra is in I.J. Similarly ar is in

1J, and so I.J is an ideal.
4. (i) Suppose that a and b € A. Then o’ = ¢(a), b/ = ¢(b) € A’. Thus

¢(a+b) = d(a) + ¢(b)
=d+VeA,
as A’ is closed under addition. Thus a +b € A and A is closed under
addition. Similarly A is closed under additive inverses and multiplica-
tion and A is non-empty, as it contains 0 for example. Thus A is a
subring.
(ii) Define
P A— A

by ¥(a) = ¢(a). Then 9 is clearly a surjective ring homomorphism.
By definition K C A and so it is clear that the kernel of ¢ is K. Now
apply the Isomorphism Theorem.
(iii) Suppose r € R and a € A. Let o' = ¢(a) and r' = ¢(r). Then
a' € A'. Thus

¢(ra) = ¢(r)é(a)
=r'd e A,
as we are assuming that A’ is a left ideal. Thus ra € A and so A is a
left ideal.

5. (i) R is clearly non-empty. If a/b € R and ¢/d € R then b and d are
not divisible by p. We have

a ¢ ad+bc ac ac

b d bd M Yd T bd

As bd is not divisible by p, R is closed under sums and products and
so R is a subring of Q.

(ii) Define a map

¢: R— 7y,
by the rule
¢(a/b) = [a][0]".
Note that [b] # 0 as b is coprime to p and so taking the inverse of [b]
makes sense. It is easy to check that ¢ is a surjective ring homomor-

phism. Moreover the kernel is clearly I. Thus the result follows by the

[somorphism Theorem.
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6. Under addition, the set R®.S, with addition defined componentwise,
is equal to the set R x .S, with addition defined componentwise. We
have already seen that this is a group. It remains to check that we have
aring. It is easy to see that multiplication is associative and that (1, 1)
plays the role of the identity; in fact just mimic the relevant steps of
the proof that we have a group under addition.

Finally it remains to check the distributive law. Suppose that x =

(a,b), y = (¢,d), and z = (e, f) € R® S. Then
2y +2) = (a,0) (. d) + (e, )

a,b)(c+e,d+ f)
a(c+e),b(d+ f))
ac+ ae,bd + bf)
ac+ ae,bd + bf)

ac,bd) + (ae,bf)
— (a,b)(c,d) + (a,b)(e, )

=xy + T2

Thus the distributive law holds.
Define a map ¢: R® S — S be sending (7, s) to s. As we already saw
this is a group homomorphism, of the underlying additive groups. It
remains to check what happens under multiplication, but the proof is

obviously the same as checking addition. Thus ¢ is a ring homorphism.
The kernel is obviously

N N N N TN TN

I={(r,0)|reR}.

In particular [ is an ideal. Consider the map ¢: R — RS such that
(r) = (r,0). This is obviously a bijection with I and it was already
checked that it is a group homomorphism. It is easy to see that in fact
1 is also a ring homomorphism.

The rest follows by symmetry.

7. (i) As R is a subset of the 2 x 2 matrices, it suffices to check that R is
non-empty (clear as R contains the zero matrix), closed under addition
and inverses (easy check) and closed under multiplication. Suppose A
and B are two matrices in R. Then

a b a v
S U I ()
for some a, b, ¢, a’, b’ and ¢ € R. Then

AB — aa’ ab' +a'b
~\ 0 e '



Thus AB € R and R is indeed a ring.
Another, slightly more sophisticated, way to solve this problem is as
follows. Matrices in R correspond to linear maps

¢: R? — R?
such that the vector eo = (0, 1) is an eigenvalue of ¢, that is ¢(eg) = ces.
With this description of R, it is very easy to see that R is an additive
subgroup of 2 x 2 matrices and that it is closed under multiplication.

(ii) I is clearly non-empty and closed under addition, so that I is an
additive subgroup. Now suppose A € R and B € I, so that

a b 0 d
A:Q)J B:Q)O'
0 ad
AB:(O 0),

0 cd
pan (0 )
Thus both AB and BA are in I. It follows that I is an ideal.
Again, another way to see this is to state that I corresponds to all
transformations ¢ of R?, such that ¢(e;) = bey and e; is in the kernel

of ¢. The fact that I is an ideal then follows readily.
(iii) Define a map

Then

and

¢:R—RaR

a b
(i o)
to the vector (a,c) € R @ R. We first check that ¢ is a ring homomor-
phism. It is not hard to see that ¢ respects addition, so that if A and
B are in R then ¢(A + B) = ¢(A) + ¢(B). We check multiplication.

We use the notation as in (1). Then
®(AB) = (ad,bb’)
= (a,b)(d’, V)
= ¢(A)o(B).

Thus ¢ is certainly a ring homomorphism. It is also clearly surjective
and the kernel is equal to I (thereby providing a different proof that I
is an ideal). The result follows by the Isomorphism Theorem.

9. The fact that the map ¢ is a ring homomorphism follows immediately
from the universal property of R ® S. Now suppose that r € Ker ¢.

Then r + 1 = I, so that r € [ and similarly »r € J. Thusr € I N J.
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Thus Ker¢ C I N J. The reverse inclusion is just as easy to prove.
Thus Ker¢o = 1N J.

10. (i) Clearly a multiple of mn is a multiple of m and a multiple of n
so that I,,,, C I,, N I,. Now suppose that a € I,,, N I,,. Then a = bm
and a = cn. As m and n are coprime, by Euclid’s algorithm, there are
two integers r and s such that

1 =rm+ sn.
Multiplying by a, we have
a = rma -+ sna
= (rc)mn + (sb)mn
= (rc+ sb)mn,
Thus a € I,,, and so I,,, = I,, N I,.
(ii) Apply question 9 to R = Z. It follows that there is a ring homo-
morphism
07 —7/1,®ZL/I,,

such that I,, N I, = I, is the kernel. Thus, by the Isomorphism
Theorem, there is an injective ring homomorphism

W1 2 Iy — 2/ Iy ® 7/ I,,.

(iii) By (ii) ¢ is an injective ring homomorphism. On the other hand,
both the domain and the range have cardinality mn. It follows that v
is in fact an isomorphism.

11 Note that if 3 does not divide a, then either a is congruent to 1 or 2
modulo 3. Either way a? is congruent to 1 = 1? = 22 modulo three. In
this case a? + b? is congruent to either 1 =1+ 0 or 2 = 1 + 1, modulo
three. Thus 3 does not divide a? + b

12. Challenge Problem: Let f;: S — R be the projection of S
onto the ith (counting left to right and then top to bottom), for ¢ = 1,
2, 3 and 4. Denote by J; the projection of I to R, via f;. Suppose that
a € Ji, so that there is a matrix

a b
(e

Multiplying on the left and right by

10
5=(0 o)
a 0
(¢ %)er
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Now multiply by

00
o= (10)

on the left to conclude that
0 a
(0 e

By symmetry, we conclude that J; = J is independent of ¢ and as [ is
an additive subgroup, that I consists of all matrices with entries in J.
It remains to prove that J is an ideal. It is clear that J is an additive
subgroup. On the other hand if a € J and r € R, then

A:(B‘ 8>ef
B:<6 8)65.

BA = (Toa 8) el
and so ra € J. Similarly ar € J and so J is indeed an ideal.
13. Challenge Problem: Denote by m the product of the primes
D1, P2, - - -, Pn. Then we want to know the number of solutions of 2% =

x inside the ring R = 7Z,,. By repeated application of the Chinese
Remainder Theorem,

ngZm @Zm @Zpa@"'zpn'

As multiplication is computed component by component on the RHS,
solving the equation 22 = x, is equivalent to solving the n equations
r? = x in the n rings Z,, and taking the product. Now z = 0 is
always a solution of 22 = . So if m is prime and x # 0, 2 = x, then
multiplying by the inverse of x, we have x = 1. Thus, prime by prime,

there are two solutions, making a total of 2" solutions in R.

and

Thus



