MODEL ANSWERS TO HWK \#5

1. There are two cosets. The first coset is $[1]=N$, the second is the coset containing -1 , which is the set of all negative real numbers. $[1] \cdot[1]=[1],[1] \cdot[-1]=[-1] \cdot[1]=[-1]$ and $[-1] \cdot[-1]=[1]$.
2. Let $a \in \mathbb{R}$. Then $[a]=\{a,-a\}$. Thus any coset contains two elements, exactly one of which is a positive real number. Given a and b positive, $[a][b]=[a b]$. Define a homomorphism

$$
\phi: G \longrightarrow \mathbb{R}^{+}
$$

by sending a to $|a|$. The kernel is $N=\{1,-1\}$. By the first Isomorphism Theorem, $G / N \simeq \mathbb{R}^{+}$.
3. Consider the canonical homomorphism

$$
u: G \longrightarrow G / N
$$

Then $M=u^{-1}(\bar{M})$. As the kernel of u is N, it follows that M contains N, as \bar{M} contains the identity of G / N.
To show that M is a subgroup of G, it suffices to prove that it is closed under products and inverses. Suppose that a and b are in M. Then $u(a)$ and $u(b)$ are in \bar{M}. Then $u(a b)=u(a) u(b) \in \bar{M}$ as \bar{M} is closed under products. Thus $a b \in M$ and M is closed under products.
Similarly $u\left(a^{-1}\right)=u(a)^{-1} \in \bar{M}$ as \bar{M} is closed under inverses. Thus $a^{-1} \in M$ and M is closed under inverses.
Thus M is a subgroup of G.
(ii) Suppose that \bar{M} is normal in G / N. Pick $g \in G$. We want to prove $g M g^{-1} \subset M$. Pick $a \in M$. Then

$$
u\left(g a g^{-1}\right)=u(g) u(a) u(g)^{-1}
$$

As \bar{M} is normal in G / N, it follows that $u(g) u(a) u(g)^{-1} \in \bar{M}$. But then $g a g^{-1} \in M$.
4. As G is cyclic, G is generated by a single element a. But then G / N is generated by $u(a)=a N$.
5. Pick two elements of G / N. As G / N is the set of left cosets in G, these two elements have the form $a N$ and $b N$. It follows that

$$
\begin{aligned}
(a N)(b N) & =a b N \\
& =b a N \\
& =(b N)(a N)
\end{aligned}
$$

where we use the fact that G is abelian to deduce $a b=b a$. But then G / N is abelian.
6. Suppose that G / Z is cyclic. Then there is an element a of G such that $a Z$ generates G / Z. Hence every left coset has the form $a^{i} Z$, for some i. Pick two elements x and y of G. Then $x Z=a^{i} Z$ and $y Z=a^{j} Z$, for some i and j, so that $x=a^{i} z_{1}$ and $y=a^{j} z_{2}$, where z_{1} and $z_{2} \in Z$. We have

$$
\begin{aligned}
x y & =\left(a^{i} z_{1}\right)\left(a^{j} z_{2}\right) \\
& =a^{i} a^{j} z_{1} z_{2} \\
& =a^{i+j} z_{1} z_{2},
\end{aligned}
$$

where we used the fact that z_{1} is in the centre. Similarly $y x=a^{i+j} z_{1} z_{2}$. Thus $x y=y x$ and G is abelian.
7. Suppose that G / N is abelian. Pick a and $b \in G$. Then

$$
\begin{aligned}
a b N & =a N b N \\
& =b N a N \\
& =b a N,
\end{aligned}
$$

so that $a b N=b a N$ and $a b=b a n$, for some $n \in N$. It follows that $a^{-1} b^{-1} a b=n \in N$, for every a and b.
Now suppose that $n=a^{-1} b^{-1} a b \in N$, for every a and b. We have

$$
b a n=b a\left(a^{-1} b^{-1} a b\right)=a b,
$$

and so

$$
\begin{aligned}
a N b N & =a b N \\
& =b a N \\
& =b N a N,
\end{aligned}
$$

and G / N is abelian.
8. We want to use the First Isomorphism Theorem. Define a homomorphism

$$
\phi: G \longrightarrow \mathbb{R}
$$

by sending f to $\phi(f)=f(1 / 4)$. Suppose that f and $g \in G$. Then

$$
\begin{aligned}
\phi(f+g) & =(f+g)(1 / 4) \\
& =f(1 / 4)+g(1 / 4) \\
& =\phi(f)+\phi(g) .
\end{aligned}
$$

Thus ϕ is a homorphism. ϕ is clearly surjective. For example, given a real number a, let f be the constant function $f(x)=a$. Then $\phi(f)=$ $f(1 / 4)=a$.

The kernel of ϕ consists of all functions that vanish at $1 / 4$, that is, N. Thus by the First Isomorphism Theorem, $G / N \simeq \mathbb{R}$.
9. We first prove (i) and (iii). Define a homomorphism

$$
\phi: G \longrightarrow G_{2}
$$

by sending $g=\left(g_{1}, g_{2}\right)$ to g_{2}. Suppose that $g=\left(g_{1}, g_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$ are in G. Then

$$
\begin{aligned}
\phi(g h) & =\phi\left(g_{1} h_{1}, g_{2} h_{2}\right) \\
& =g_{2} h_{2} \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right) \\
& =\phi(g) \phi(h) .
\end{aligned}
$$

Thus ϕ is a homomorphism. ϕ is clearly surjective as given $g_{2} \in G$, $\phi\left(e_{1}, g_{2}\right)=g_{2}$.
Suppose that $\left(g_{1}, g_{2}\right) \in \operatorname{Ker} \phi$. Then $g_{2}=e_{2}$. Thus $N=\operatorname{Ker} \phi$. Hence (i). (iii) follows from the First Isomorphism Theorem.

To prove (ii), define a homomorphism

$$
f: N \longrightarrow G_{1}
$$

by sending $\left(g_{1}, e_{2}\right)$ to g_{1}. This is clearly an isomorphism.
10. By definition the order of a is the order of the subgroup $H=\langle a\rangle$ and the order of $a N$ is the order of the subgroup $H^{\prime}=\langle a N\rangle$. Now it is clear that H^{\prime} is the image of H under the canonical homomorphism

$$
u: G \longrightarrow G / N
$$

So it suffices to prove that if we have a surjective homomorphism

$$
\phi: H \longrightarrow H^{\prime}
$$

then the order of H^{\prime} divides the order of H. But by the first isomorphism Theorem,

$$
H^{\prime} \simeq H / H^{\prime \prime}
$$

where $H^{\prime \prime}$ is the kernel of ϕ. Thus the order of H^{\prime} is the index of $H^{\prime \prime}$ in H, the number of left cosets of $H^{\prime \prime}$ in H, which by Lagrange divides the order of H.
11. Let $\phi: G_{1} \times G_{2} \longrightarrow G_{2} \times G_{1}$ be the homomorphism that sends $\left(g_{1}, g_{2}\right)$ to $\left(g_{2}, g_{1}\right)$. This is clearly a bijection. We check that it is a
homomorphism. Suppose that $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right) \in G_{1} \times G_{2}$. Then

$$
\begin{aligned}
\phi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right) & =\phi\left(g_{1} h_{1}, g_{2} h_{2}\right) \\
& =\left(g_{2} h_{2}, g_{1} h_{1}\right) \\
& =\left(g_{2}, g_{1}\right)\left(h_{2}, h_{1}\right) \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Thus ϕ is an isomorphism.
Alternatively, we could use the universal property of the product. Both $G_{1} \times G_{2}$ and $G_{2} \times G_{1}$ satisfy the universal properties of a product and so they must be isomorphic, by uniqueness.
12. Let $h \in H$ and $k \in K$ and let $a=h k h^{-1} k^{-1}$. As K is normal, $h k h^{-1} \in K$, so that $a=\left(h k h^{-1}\right) k^{-1} \in K$. On the other hand, as H is normal $k h^{-1} k^{-1} \in H$ and so $a=h\left(k h^{-1} k^{-1}\right) \in H$. Thus $a \in H \cap K$ and so $a=e$. Thus $h k=k h$ and so h and k commute. But then H and K commute.
13. Suppose that G is isomorphic to $H^{\prime} \times K^{\prime}$. Then we might as well assume that $G=H^{\prime} \times K^{\prime}$. In this case take $H=H^{\prime} \times\{f\}$ and $K^{\prime}=\{e\} \times K$, where e is the identity of H^{\prime} and f is the identity of K^{\prime}. In this case we already proved in question 9 that H and K are normal in G and (i) holds. Suppose that $(a, b) \in H \cap K$. Then $a=e$ and $b=f$ so that $(a, b)=(e, f)$ is the identity of G. Hence (ii) holds. Suppose that $\left(h^{\prime}, k^{\prime}\right) \in G$, where $h^{\prime} \in H^{\prime}$ and $k^{\prime} \in K^{\prime}$. Then $\left(h^{\prime}, k^{\prime}\right)=\left(h^{\prime}, f\right)\left(e, k^{\prime}\right)=h k$ where $h=\left(h^{\prime}, f\right) \in H$ and $k=\left(e, k^{\prime}\right) \in K$. Thus $\left(h^{\prime}, k^{\prime}\right) \in H \vee K$ and $G=H \vee K$. Hence (iii).
Now suppose that (i-iii) hold. Since H and K generate G, every element of G is a product of elements of H and K. As H and K are normal in G and (ii) holds, we proved in question 10 that the elements of H commute with the elements of K. Thus it is easy to prove that $H K$ is closed under products and inverses and it follows that every element of G is of the form $h k$ so that $G=H K$.
Define a homomorphism

$$
\phi: G \longrightarrow H \times K
$$

by sending $g=h k$ to (h, k). Suppose that $h_{1} k_{1}=h_{2} k_{2}$. Then $h_{2}^{-1} h_{1}=$ $k_{2} k_{1}^{-1} \in H \cap K$. Thus $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}=e$, the identity of G. Thus $h_{1}=h_{2}$ and $k_{1}=k_{2}$. Thus ϕ is well-defined.
The composition of ϕ with the two projection maps are the two identities, and these are both homomorphisms. By the universal property of a product, it follows that ϕ is a homomorphism.
ϕ is clearly surjective, and it is injective, as the kernel is clearly trivial.

Thus ϕ is an isomorphism and G is isomorphic to $H \times K$. But $H \times K$ is clearly isomorphic to $H^{\prime} \times K^{\prime}$ and so we are done.
14. Let X be the set of elements of $\mathbb{Z} / 3 \mathbb{Z}$. Put a binary operation \star on X be setting

$$
[a] \star[b]=[a-b] .
$$

It is clear that this operation is well-defined. The element [0] acts as identity and

$$
[a] \star[a]=[a-a]=[0],
$$

so that every element is its own inverse. However set $c=[3]=[0]$, $b=[2]$ and $a=[1]$. Then
$[c]-([b]-[a])=[3]-[1]=[2] \quad$ and $\quad([c]-[b])-[a]=[2]-[1]=[1] \neq[2]$
Thus \star is not associative.

