
MODEL ANSWERS TO HWK #5

1. There are two cosets. The first coset is [1] = N , the second is the
coset containing −1, which is the set of all negative real numbers.
[1] · [1] = [1], [1] · [−1] = [−1] · [1] = [−1] and [−1] · [−1] = [1].
2. Let a ∈ R. Then [a] = {a,−a}. Thus any coset contains two
elements, exactly one of which is a positive real number. Given a and
b positive, [a][b] = [ab]. Define a homomorphism

φ : G −→ R+,

by sending a to |a|. The kernel is N = {1,−1}. By the first Isomor-
phism Theorem, G/N ' R+.
3. Consider the canonical homomorphism

u : G −→ G/N.

Then M = u−1(M). As the kernel of u is N , it follows that M contains
N , as M contains the identity of G/N .
To show that M is a subgroup of G, it suffices to prove that it is closed
under products and inverses. Suppose that a and b are in M . Then
u(a) and u(b) are in M . Then u(ab) = u(a)u(b) ∈ M as M is closed
under products. Thus ab ∈M and M is closed under products.
Similarly u(a−1) = u(a)−1 ∈ M as M is closed under inverses. Thus
a−1 ∈M and M is closed under inverses.
Thus M is a subgroup of G.
(ii) Suppose that M is normal in G/N . Pick g ∈ G. We want to prove
gMg−1 ⊂M . Pick a ∈M . Then

u(gag−1) = u(g)u(a)u(g)−1.

As M is normal in G/N , it follows that u(g)u(a)u(g)−1 ∈M . But then
gag−1 ∈M .
4. As G is cyclic, G is generated by a single element a. But then G/N
is generated by u(a) = aN .
5. Pick two elements of G/N . As G/N is the set of left cosets in G,
these two elements have the form aN and bN . It follows that

(aN)(bN) = abN

= baN

= (bN)(aN),
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where we use the fact that G is abelian to deduce ab = ba. But then
G/N is abelian.
6. Suppose that G/Z is cyclic. Then there is an element a of G such
that aZ generates G/Z. Hence every left coset has the form aiZ, for
some i. Pick two elements x and y ofG. Then xZ = aiZ and yZ = ajZ,
for some i and j, so that x = aiz1 and y = ajz2, where z1 and z2 ∈ Z.
We have

xy = (aiz1)(a
jz2)

= aiajz1z2

= ai+jz1z2,

where we used the fact that z1 is in the centre. Similarly yx = ai+jz1z2.
Thus xy = yx and G is abelian.
7. Suppose that G/N is abelian. Pick a and b ∈ G. Then

abN = aNbN

= bNaN

= baN,

so that abN = baN and ab = ban, for some n ∈ N . It follows that
a−1b−1ab = n ∈ N , for every a and b.
Now suppose that n = a−1b−1ab ∈ N , for every a and b. We have

ban = ba(a−1b−1ab) = ab,

and so

aNbN = abN

= baN

= bNaN,

and G/N is abelian.
8. We want to use the First Isomorphism Theorem. Define a homo-
morphism

φ : G −→ R
by sending f to φ(f) = f(1/4). Suppose that f and g ∈ G. Then

φ(f + g) = (f + g)(1/4)

= f(1/4) + g(1/4)

= φ(f) + φ(g).

Thus φ is a homorphism. φ is clearly surjective. For example, given a
real number a, let f be the constant function f(x) = a. Then φ(f) =
f(1/4) = a.
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The kernel of φ consists of all functions that vanish at 1/4, that is, N .
Thus by the First Isomorphism Theorem, G/N ' R.
9. We first prove (i) and (iii). Define a homomorphism

φ : G −→ G2,

by sending g = (g1, g2) to g2. Suppose that g = (g1, g2) and h = (h1, h2)
are in G. Then

φ(gh) = φ(g1h1, g2h2)

= g2h2

= φ(g1, g2)φ(h1, h2)

= φ(g)φ(h).

Thus φ is a homomorphism. φ is clearly surjective as given g2 ∈ G,
φ(e1, g2) = g2.
Suppose that (g1, g2) ∈ Kerφ. Then g2 = e2. Thus N = Kerφ. Hence
(i). (iii) follows from the First Isomorphism Theorem.
To prove (ii), define a homomorphism

f : N −→ G1

by sending (g1, e2) to g1. This is clearly an isomorphism.
10. By definition the order of a is the order of the subgroup H = 〈a〉
and the order of aN is the order of the subgroup H ′ = 〈aN〉. Now it
is clear that H ′ is the image of H under the canonical homomorphism

u : G −→ G/N.

So it suffices to prove that if we have a surjective homomorphism

φ : H −→ H ′

then the order of H ′ divides the order of H. But by the first isomor-
phism Theorem,

H ′ ' H/H ′′,

where H ′′ is the kernel of φ. Thus the order of H ′ is the index of H ′′

in H, the number of left cosets of H ′′ in H, which by Lagrange divides
the order of H.
11. Let φ : G1 × G2 −→ G2 × G1 be the homomorphism that sends
(g1, g2) to (g2, g1). This is clearly a bijection. We check that it is a
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homomorphism. Suppose that (g1, g2) and (h1, h2) ∈ G1 ×G2. Then

φ((g1, g2)(h1, h2)) = φ(g1h1, g2h2)

= (g2h2, g1h1)

= (g2, g1)(h2, h1)

= φ(g1, g2)φ(h1, h2).

Thus φ is an isomorphism.
Alternatively, we could use the universal property of the product. Both
G1×G2 and G2×G1 satisfy the universal properties of a product and
so they must be isomorphic, by uniqueness.
12. Let h ∈ H and k ∈ K and let a = hkh−1k−1. As K is normal,
hkh−1 ∈ K, so that a = (hkh−1)k−1 ∈ K. On the other hand, as H is
normal kh−1k−1 ∈ H and so a = h(kh−1k−1) ∈ H. Thus a ∈ H ∩ K
and so a = e. Thus hk = kh and so h and k commute. But then H
and K commute.
13. Suppose that G is isomorphic to H ′ × K ′. Then we might as
well assume that G = H ′ × K ′. In this case take H = H ′ × {f} and
K ′ = {e} × K, where e is the identity of H ′ and f is the identity
of K ′. In this case we already proved in question 9 that H and K
are normal in G and (i) holds. Suppose that (a, b) ∈ H ∩ K. Then
a = e and b = f so that (a, b) = (e, f) is the identity of G. Hence (ii)
holds. Suppose that (h′, k′) ∈ G, where h′ ∈ H ′ and k′ ∈ K ′. Then
(h′, k′) = (h′, f)(e, k′) = hk where h = (h′, f) ∈ H and k = (e, k′) ∈ K.
Thus (h′, k′) ∈ H ∨K and G = H ∨K. Hence (iii).
Now suppose that (i-iii) hold. SinceH andK generateG, every element
of G is a product of elements of H and K. As H and K are normal
in G and (ii) holds, we proved in question 10 that the elements of H
commute with the elements of K. Thus it is easy to prove that HK
is closed under products and inverses and it follows that every element
of G is of the form hk so that G = HK.
Define a homomorphism

φ : G −→ H ×K,

by sending g = hk to (h, k). Suppose that h1k1 = h2k2. Then h−12 h1 =
k2k

−1
1 ∈ H ∩ K. Thus h−12 h1 = k2k

−1
1 = e, the identity of G. Thus

h1 = h2 and k1 = k2. Thus φ is well-defined.
The composition of φ with the two projection maps are the two iden-
tities, and these are both homomorphisms. By the universal property
of a product, it follows that φ is a homomorphism.
φ is clearly surjective, and it is injective, as the kernel is clearly trivial.
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Thus φ is an isomorphism and G is isomorphic to H ×K. But H ×K
is clearly isomorphic to H ′ ×K ′ and so we are done.
14. Let X be the set of elements of Z/3Z. Put a binary operation ?
on X be setting

[a] ? [b] = [a− b].
It is clear that this operation is well-defined. The element [0] acts as
identity and

[a] ? [a] = [a− a] = [0],

so that every element is its own inverse. However set c = [3] = [0],
b = [2] and a = [1]. Then

[c]−([b]−[a]) = [3]−[1] = [2] and ([c]−[b])−[a] = [2]−[1] = [1] 6= [2]

Thus ? is not associative.
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