MODEL ANSWERS TO HWK #5

1. There are two cosets. The first coset is [1] = N, the second is the
coset containing —1, which is the set of all negative real numbers.

(1] [ =[], [ - [=1] = [=1] - [1] = [=1] and [-1] - [-1] = [1].

2. Let a € R. Then [a] = {a,—a}. Thus any coset contains two
elements, exactly one of which is a positive real number. Given a and
b positive, [a][b] = [ab]. Define a homomorphism

¢: G — RT,

by sending a to |a|. The kernel is N = {1, —1}. By the first Isomor-
phism Theorem, G/N ~ R*.
3. Consider the canonical homomorphism

u: G — G/N.

Then M = u~'(M). As the kernel of u is N, it follows that M contains
N, as M contains the identity of G/N.
To show that M is a subgroup of G, it suffices to prove that it is closed
under products and inverses. Suppose that a and b are in M. Then
u(a) and u(b) are in M. Then u(ab) = u(a)u(b) € M as M is closed
under products. Thus ab € M and M is closed under products.
Similarly u(a™!) = u(a)™' € M as M is closed under inverses. Thus
a~' € M and M is closed under inverses.
Thus M is a subgroup of G.
(ii) Suppose that M is normal in G/N. Pick g € G. We want to prove
gMg™' C M. Pick a € M. Then

u(gag™") = u(g)u(a)u(g) ™.
As M is normal in G/N, it follows that u(g)u(a)u(g)~! € M. But then
gag~t € M.
4. As G is cyclic, G is generated by a single element a. But then G/N
is generated by u(a) = aN.
5. Pick two elements of G/N. As G/N is the set of left cosets in G,
these two elements have the form aN and bN. It follows that

(aN)(bN) = abN
= baN
— (BN)(aN),
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where we use the fact that G is abelian to deduce ab = ba. But then
G/N is abelian.
6. Suppose that G/Z is cyclic. Then there is an element a of G such
that aZ generates G/Z. Hence every left coset has the form a'Z, for
some 7. Pick two elements z and y of G. Then 27 = a'Z and yZ = o’ Z,
for some i and j, so that x = a’z; and y = a2, where z; and 2, € Z.
We have
zy = (a'z)(d’ z)

== aiajzl Z9

= a2,
where we used the fact that z; is in the centre. Similarly yz = a'™/2;2,.

Thus zy = yr and G is abelian.
7. Suppose that G/N is abelian. Pick a and b € G. Then

abN = aNbN
= bNaN
= baN,
so that abN = baN and ab = ban, for some n € N. It follows that

a~b™tab=n € N, for every a and b.
Now suppose that n = a='b~tab € N, for every a and b. We have

ban = ba(a"'b"tab) = ab,
and so

aNbN = abN
= baN
=bNaN,
and G/N is abelian.
8. We want to use the First Isomorphism Theorem. Define a homo-
morphism
¢o:G— R
by sending f to ¢(f) = f(1/4). Suppose that f and g € G. Then
o(f+9)=(f+9)(1/4)
= f(1/4) 4+ g(1/4)
= o(f) + o(9).

Thus ¢ is a homorphism. ¢ is clearly surjective. For example, given a
real number a, let f be the constant function f(z) = a. Then ¢(f) =
f(1/4) = a.
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The kernel of ¢ consists of all functions that vanish at 1/4, that is, V.
Thus by the First Isomorphism Theorem, G/N ~ R.
9. We first prove (i) and (iii). Define a homomorphism

¢Z G—)GQ,

by sending g = (g1, g2) to go. Suppose that g = (g1, g2) and h = (hy, ho)
are in G. Then

P(gh) = ¢(g1h1, g2ho)
= g2ho
= ¢(91,92)0(h1, ha)
= ¢(g)p(h).

Thus ¢ is a homomorphism. ¢ is clearly surjective as given g, € G,

o(e1, g2) = go-

Suppose that (g1, ¢92) € Ker¢. Then g = e5. Thus N = Ker ¢. Hence
(i). (iii) follows from the First Isomorphism Theorem.

To prove (ii), define a homomorphism

f:N—)Gl

by sending (g1, e) to g;. This is clearly an isomorphism.

10. By definition the order of a is the order of the subgroup H = (a)
and the order of aNV is the order of the subgroup H' = (aN). Now it
is clear that H' is the image of H under the canonical homomorphism

u: G — G/N.
So it suffices to prove that if we have a surjective homomorphism
¢: H— H'
then the order of H' divides the order of H. But by the first isomor-
phism Theorem,
H ~ H/H",
where H” is the kernel of ¢. Thus the order of H' is the index of H”

in H, the number of left cosets of H” in H, which by Lagrange divides
the order of H.

11. Let ¢: G; x G3 — G5 x G be the homomorphism that sends

(91, 92) to (ga,91). This is clearly a bijection. We check that it is a
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homomorphism. Suppose that (g1, g2) and (hy, he) € G1 X G2. Then

?((91, 92)(h1, b)) = ¢(g1h1, g2ho)
= (g2ha, g1h1)
= (92,91)(h2, h1)
= ¢(g1, 92)p(h1, ha).

Thus ¢ is an isomorphism.

Alternatively, we could use the universal property of the product. Both
G1 x G5 and G5 x (G satisfy the universal properties of a product and
so they must be isomorphic, by uniqueness.

12. Let h € H and k € K and let a = hkh™'k~'. As K is normal,
hkh™' € K, so that a = (hkh™')k™! € K. On the other hand, as H is
normal kh™*k~! € H and so a = h(kh™'k™') € H. Thusa € HNK
and so a = e. Thus hk = kh and so h and k commute. But then H
and K commute.

13. Suppose that G is isomorphic to H' x K’. Then we might as
well assume that G = H' x K’. In this case take H = H' x {f} and
K' = {e} x K, where e is the identity of H' and f is the identity
of K’. In this case we already proved in question 9 that H and K
are normal in G and (i) holds. Suppose that (a,b) € H N K. Then
a =e and b = f so that (a,b) = (e, f) is the identity of G. Hence (ii)
holds. Suppose that (b, k') € G, where b’ € H' and k¥’ € K’. Then
(W, k") = (', f)(e, k') = hk where h = (I, f) € H and k = (e, k') € K.
Thus (b, k") € HV K and G = H V K. Hence (iii).

Now suppose that (i-iii) hold. Since H and K generate G, every element
of GG is a product of elements of H and K. As H and K are normal
in G and (ii) holds, we proved in question 10 that the elements of H
commute with the elements of K. Thus it is easy to prove that HK
is closed under products and inverses and it follows that every element
of GG is of the form hk so that G = HK.

Define a homomorphism

¢:G— H X K,

by sending g = hk to (h, k). Suppose that hik; = hoky. Then hy'h; =
koki' € HN K. Thus hy'hy = kok;! = e, the identity of G. Thus
hy = hy and k1 = ko. Thus ¢ is well-defined.

The composition of ¢ with the two projection maps are the two iden-
tities, and these are both homomorphisms. By the universal property
of a product, it follows that ¢ is a homomorphism.

¢ is clearly surjective, and it is injective, as the kernel is clearly trivial.
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Thus ¢ is an isomorphism and G is isomorphic to H x K. But H x K
is clearly isomorphic to H' x K’ and so we are done.
14. Let X be the set of elements of Z/3Z. Put a binary operation *
on X be setting
[a] % [b] = [a — b].

It is clear that this operation is well-defined. The element [0] acts as
identity and

[a] x [a] = [a — a] = 0],
so that every element is its own inverse. However set ¢ = [3] = [0],
b=[2] and a = [1]. Then

[d=(bl=la]) = B]-[] =[2]  and  ([d=[b])—la] = [2]-[1] = [1] # [2]

Thus * is not associative.



