MODEL ANSWERS TO HWK #4

1. (i) Yes. Given a and $b \in \mathbb{Z}$,

$$\varphi(ab) = [ab]$$

= [a][b]
= $\varphi(a)\varphi(b).$

This map is clearly surjective but not injective. Indeed the kernel is easily seen to be $n\mathbb{Z}$.

(ii) No. Suppose that G is not abelian and that x and y are two elements of G such that $xy \neq yx$. Then $x^{-1}y^{-1} \neq y^{-1}x^{-1}$. On the other hand

$$\varphi(xy) = (xy)^{-1}$$
$$= y^{-1}x^{-1}$$
$$\neq x^{-1}y^{-1}$$
$$= \varphi(x)\varphi(y),$$

and one wrong certainly does not make a right. (iii) Yes. Suppose that x and y are in G. As G is abelian

$$\varphi(xy) = (xy)^{-1}$$
$$= y^{-1}x^{-1}$$
$$= x^{-1}y^{-1}$$
$$= \varphi(x)\varphi(y).$$

Thus φ is a homomorphism. φ is its own inverse, since $(a^{-1})^{-1} = a$ and φ is a bijection.

In particular the kernel of φ is trivial.

(iv) Yes. φ is a homomorphism as the product of two positive numbers is positive, the product of two negative numbers is positive and the product of a negative and a positive number is negative.

This map is clearly surjective. The kernel consists of all positive real numbers. Thus φ is far from injective.

(v) Yes. Suppose that x and y are in G. Then

$$\varphi(xy) = (xy)^n$$

= $x^n y^n$
= $\varphi(x)\varphi(y).$

In general this map is neither injective nor surjective. For example, if $G = \mathbb{Z}$ and n = 2 then the image of φ is $2\mathbb{Z}$, and for example 1 is not in the image.

Now suppose that $G = \mathbb{Z}_4$ and n = 2. Then 2[2] = [4] = [0], so that [2] is in the kernel. In general the kernel of φ is

$$\operatorname{Ker} \varphi = \{ g \in G \, | \, g^n = e \}.$$

2. We need to check that $aHa^{-1} = H$ for all

$$a \in G = \{ I, R, R^2, R^3, S_1, S_2, D_1, D_2 \}.$$

Since H is generated by R,

$$H = \langle R \rangle = \{ I, R, R^2, R^3 \},\$$

it suffices to check that $aRa^{-1} \in H$. If we pick $a \in H$ there is nothing to prove. By symmetry we only need to worry about $a = S_1$ and $a = D_1$.

$$S_1 R S_1^{-1} = S_1 R S_1 = D_1 S_1 = R^3$$
 and $D_1 R D_1^{-1} = D_1 R D_1 = S_2 D_1 = R^3$,

which is in *H*. Thus $H \triangleleft G$.

3. Let $g \in G$. We want to show that $gZg^{-1} \subset Z$. Pick $z \in Z$. Then z commutes with g, so that $gzg^{-1} = zgg^{-1} = z \in Z$. Thus Z is normal in G.

4. Let $g \in G$. We want to show that $g(H \cap K)g^{-1} \subset H \cap K$. Pick $l \in H \cap K$. Then $l \in H$ and $l \in K$. It follows that $glg^{-1} \in H$ and $glg^{-1} \in K$, as both H and K are normal in G. But then $glg^{-1} \in H \cap K$ and so $H \cap K$ is normal.

5. $H = \{e, (1, 2)\}$. Then the left cosets of H are (i)

$$H = \{e, (1, 2)\}\$$
$$(1, 3)H = \{(1, 3), (1, 2, 3)\}\$$
$$(2, 3)H = \{(2, 3), (1, 3, 2)\}\$$

and the right cosets are

(ii)

$$H = \{e, (1, 2)\}$$
$$H(1, 3) = \{(1, 3), (1, 3, 2)\}$$
$$H(2, 3) = \{(2, 3), (1, 2, 3)\}.$$

(iii) Clearly not every left coset is a right coset. For example $\{(1,3), (1,2,3)\}$ is a left coset, but not a right coset.

6. (i) Suppose that a and $b \in G$. Let c = ab and $\sigma = \sigma_a = \psi(a)$, $\tau = \sigma_b = \psi(b)$ and $\rho = \sigma_c = \psi(c)$. We want to check that

$$\rho = \sigma \tau$$
.

Since both sides are permutations of G, it suffices to check that both sides have the same effect on an arbitrary element $g \in G$.

$$\begin{aligned} (\sigma \circ \tau)(g) &= \sigma(\tau(g)) \\ &= \sigma(bgb^{-1}) \\ &= a(bgb^{-1})a^{-1} \\ &= (ab)g(ab)^{-1} \\ &= cgc^{-1} \\ &= \rho(g). \end{aligned}$$

Thus ψ is a group homomorphism.

(ii) Suppose that $z \in Z(G)$. Let $\sigma = \sigma_z = \psi(z)$. Then

$$\sigma(g) = zgz^{-1} = gzz^{-1} = g.$$

Thus σ is the identity permutation and $z \in \text{Ker } \psi$. Thus

$$Z(G) \subset \operatorname{Ker} \psi.$$

Now suppose $a \in \operatorname{Ker} \psi$. Let $\sigma = \sigma_a = \psi(a)$. Then σ is the identity permutation, so that

$$g = \sigma(g) = aga^{-1},$$

for any $g \in G$. But then ga = ag for all $g \in G$ so that $a \in Z(G)$. Thus

$$\operatorname{Ker} \psi \subset Z(G),$$

so that $\operatorname{Ker} \psi = Z(G)$.

7. Let $g \in G$. We have to show that $g\theta(N)g^{-1} \subset \theta(N)$. Now as θ is surjective, we may write $g = \theta(h)$, for some $h \in G$. Pick $m \in \theta(N)$. Then $m = \theta(n)$, for some $n \in N$. We have

$$gmg^{-1} = \theta(h)\theta(n)\theta(h)^{-1}$$
$$= \theta(hnh^{-1}).$$

Now $hnh^{-1} \in N$ as N is normal. So $gmg^{-1} \in \theta(N)$ and $\theta(N)$ is normal in G.

8. Note that S_3 is the group of permutations of three objects. So we want to find three things on which G acts. Pick any element h of G. Then the order of h divides the order of G. As the order of G is six, it follows that the order of h is one, two, three, or six. It cannot be six, as then G would be cyclic, whence abelian, and it can only be one if h is the identity.

We first try to prove that G contains an element of order 2. Suppose not. Let a be an element of G, not the identity. Then $H_1 = \langle a \rangle =$ $\{e, a, a^2\}$ contains three elements. Pick an element b of G not an element of H_1 . Then $H_2 = \langle b \rangle = \{e, b, b^2\}$ contains three elements, two of which, b and b^2 , are not elements of H_1 . Thus $H_1 \cup H_2$ has five elements. The last element c of G must have order two, a contradiction. Thus G contains an element of order 2.

Suppose that a has order two. Let $H = \langle a \rangle = \{e, a\}$, a subgroup of G of order two. Pick an element b which does no belong to H. Consider the group generated by a and b, $K = \langle a, b \rangle$. This has at least three elements, e, a and b. The order of K divides G, so that K has order 3 or 6, by Lagrange. K contains H, so that the order of K is even. It follows that K has order 6, so that $G = \langle a, b \rangle$. As G is not abelian, a and b don't commute, $ab \neq ba$.

The number of left cosets of H in G (the index of H in G) is equal to three, by Lagrange. Let S be the set of left cosets. Define a map from G to A(S) as follows,

 $\phi \colon G \longrightarrow A(S)$

by sending g to $\sigma = \phi(g)$, where σ is the map,

 $\sigma\colon S \longrightarrow S$

 $\sigma(xH) = gxH$, that is, σ acts on the left cosets by left multiplication by g. Suppose that xH = yH, then y = xh and (gy) = (gx)h so that (gx)H = (gy)H and ϕ is well-defined. σ is a bijection, as its inverse τ is given by left multiplication by g^{-1} . Now we check that ϕ is a homomorphism. Suppose that g_1 and g_2 are two elements of G. Set $\sigma_i = \phi(g_i)$ and let $\tau = \phi(g_1g_2)$. We need to check that $\tau = \sigma_1\sigma_2$. Pick a left coset xH. Then

$$\sigma_1 \sigma_2(xH) = \sigma_1(g_2 xH)$$
$$= g_1 g_2 xH$$
$$= \tau(xH).$$

Thus ϕ is a homomorphism. We check that ϕ is injective. It suffices to prove that the kernel of ϕ is trivial. Pick $g \in \text{Ker } \phi$. Then $\sigma = \phi(g)$ is the identity permutation, so that for every left coset xH,

$$gxH = xH.$$

Consider the left coset H. Then gH = H. It follows that $g \in H$, so that either g = e or g = a. If g = a, then consider the left coset bH. We would then have abH = bH, so that ab = bh', where $h' \in H$. So h' = e or h' = a. If h' = e, then ab = b, and a = e, a contradiction. Otherwise ab = ba, a contradiction. Thus g = e, the kernel of ϕ is trivial and ϕ is injective.

As both G and A(S) have order six and ϕ is injective, it follows that ϕ is a bijection. Hence G is isomorphic to S_3 .

9. Let G be a group of order nine. Let $g \in G$ be an element of G. Then the order of g divides the order of G. Thus the order of g is 1, 3 or 9. If G is cyclic then G is certainly abelian. Thus we may assume that there is no element of order nine. On the other hand the order of g is one iff g = e.

Thus we may assume that every element of G, other than the identity, has order three. Let $a \in G$ be an element of G, other than the identity. Let $H = \langle a \rangle$. Then H has order three. Let S be the set of left cosets of H in G. By Lagrange S has three elements. Let

$$\phi \colon G \longrightarrow A(S) \simeq S_3$$

be the map given by left multiplication. As in question 8, ϕ is a group homomorphism. Let G' be the order of the image. Then G' divides the order of G, by Lagrange and it also divides the order of S_3 . Thus G'must have order three. It follows that the kernel of ϕ has order three. Thus the kernel of ϕ is H and H is a normal subgroup of G.

Let $b \in G$ be any element of G. Then bab^{-1} must be an element of H, as H is normal in G. It is clear that $bab^{-1} \neq e$. If $bab^{-1} = a$ then ba = ab, so that a and b commute. If $bab^{-1} = a^2$ then

$$b^{-1}ab = b^{2}ab^{-2}$$

= $b(bab^{-1})b^{-1}$
= $ba^{2}b^{-1}$
= $(bab^{-1})(bab^{-1})$
= a .

and so ab = ba. Therefore G is abelian. 10. Let S be the set of left cosets of H in G. Define a map

$$\phi \colon G \longrightarrow \underset{5}{\longrightarrow} A(S)$$

by sending $g \in G$ to the permutation $\sigma \in A(S)$, a map

 $S \longrightarrow S$

defined by the rule $\sigma(aH) = gaH$. As in question 8, ϕ is a homomorphism.

Let N be the kernel of ϕ . Then N is normal in G. Suppose that $n \in N$ and let $\sigma = \phi(n)$. Then σ is the identity permutation of S. In particular $\sigma(H) = H$, so that nH = H. Thus $n \in H$ and so $N \subset H$. Let n be the index of H, so that the image of G has at most n! elements. In this case there are at most n! left cosets of N in G, since each left coset of N in G is mapped to a different element of A(S).

11. Let A be the set of elements such that $\phi(a) = a^{-1}$. Pick an element $g \in G$ and let $B = g^{-1}A$. Then

$$|A \cap B| = |A| + |B| - |A \cup B|$$

> (3/4)|G| + (3/4)|G| - |G|
= (1/2)|G|.

Now suppose that $g \in A$. If $h \in A \cap B$ then $gh \in A$. It follows that

$$h^{-1}g^{-1} = (gh)^{-1} = \phi(gh) = \phi(g)\phi(h) = g^{-1}h^{-1}.$$

Taking inverses, we see that g and h must commute. Let C be the centraliser of g. Then $A \cap B \subset C$, so that C contains more than half the elements of G. On the other hand, C is a subgroup of G. By Lagrange the order of C divides the order of G. Thus C = G. Hence g is in the centre Z of G and so the centre Z of G contains at least 3/4 of the elements of G. But then the centre of G must also equal G, as it is also a subgroup of G. Thus G is abelian.