
MODEL ANSWERS TO HWK #4

1. (i) Yes. Given a and b ∈ Z,

ϕ(ab) = [ab]

= [a][b]

= ϕ(a)ϕ(b).

This map is clearly surjective but not injective. Indeed the kernel is
easily seen to be nZ.
(ii) No. Suppose that G is not abelian and that x and y are two
elements of G such that xy 6= yx. Then x−1y−1 6= y−1x−1. On the
other hand

ϕ(xy) = (xy)−1

= y−1x−1

6= x−1y−1

= ϕ(x)ϕ(y),

and one wrong certainly does not make a right.
(iii) Yes. Suppose that x and y are in G. As G is abelian

ϕ(xy) = (xy)−1

= y−1x−1

= x−1y−1

= ϕ(x)ϕ(y).

Thus ϕ is a homomorphism. ϕ is its own inverse, since (a−1)−1 = a
and ϕ is a bijection.
In particular the kernel of ϕ is trivial.
(iv) Yes. ϕ is a homomorphism as the product of two positive numbers
is positive, the product of two negative numbers is positive and the
product of a negative and a positive number is negative.
This map is clearly surjective. The kernel consists of all positive real
numbers. Thus ϕ is far from injective.
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(v) Yes. Suppose that x and y are in G. Then

ϕ(xy) = (xy)n

= xnyn

= ϕ(x)ϕ(y).

In general this map is neither injective nor surjective. For example, if
G = Z and n = 2 then the image of ϕ is 2Z, and for example 1 is not
in the image.
Now suppose that G = Z4 and n = 2. Then 2[2] = [4] = [0], so that [2]
is in the kernel. In general the kernel of ϕ is

Kerϕ = { g ∈ G | gn = e }.

2. We need to check that aHa−1 = H for all

a ∈ G = { I, R,R2, R3, S1, S2, D1, D2 }.

Since H is generated by R,

H = 〈R〉 = { I, R,R2, R3 },

it suffices to check that aRa−1 ∈ H. If we pick a ∈ H there is nothing
to prove. By symmetry we only need to worry about a = S1 and
a = D1.

S1RS
−1
1 = S1RS1 = D1S1 = R3 and D1RD

−1
1 = D1RD1 = S2D1 = R3,

which is in H. Thus H �G.
3. Let g ∈ G. We want to show that gZg−1 ⊂ Z. Pick z ∈ Z. Then z
commutes with g, so that gzg−1 = zgg−1 = z ∈ Z. Thus Z is normal
in G.
4. Let g ∈ G. We want to show that g(H ∩ K)g−1 ⊂ H ∩ K. Pick
l ∈ H ∩ K. Then l ∈ H and l ∈ K. It follows that glg−1 ∈ H and
glg−1 ∈ K, as both H and K are normal in G. But then glg−1 ∈ H∩K
and so H ∩K is normal.
5. H = {e, (1, 2)}. Then the left cosets of H are
(i)

H = {e, (1, 2)}
(1, 3)H = {(1, 3), (1, 2, 3)}
(2, 3)H = {(2, 3), (1, 3, 2)}

and the right cosets are
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(ii)

H = {e, (1, 2)}
H(1, 3) = {(1, 3), (1, 3, 2)}
H(2, 3) = {(2, 3), (1, 2, 3)}.

(iii) Clearly not every left coset is a right coset. For example {(1, 3), (1, 2, 3)}
is a left coset, but not a right coset.
6. (i) Suppose that a and b ∈ G. Let c = ab and σ = σa = ψ(a),
τ = σb = ψ(b) and ρ = σc = ψ(c). We want to check that

ρ = στ.

Since both sides are permutations of G, it suffices to check that both
sides have the same effect on an arbitrary element g ∈ G.

(σ ◦ τ)(g) = σ(τ(g))

= σ(bgb−1)

= a(bgb−1)a−1

= (ab)g(ab)−1

= cgc−1

= ρ(g).

Thus ψ is a group homomorphism.
(ii) Suppose that z ∈ Z(G). Let σ = σz = ψ(z). Then

σ(g) = zgz−1 = gzz−1 = g.

Thus σ is the identity permutation and z ∈ Kerψ. Thus

Z(G) ⊂ Kerψ.

Now suppose a ∈ Kerψ. Let σ = σa = ψ(a). Then σ is the identity
permutation, so that

g = σ(g) = aga−1,

for any g ∈ G. But then ga = ag for all g ∈ G so that a ∈ Z(G). Thus

Kerψ ⊂ Z(G),

so that Kerψ = Z(G).
7. Let g ∈ G. We have to show that gθ(N)g−1 ⊂ θ(N). Now as θ is
surjective, we may write g = θ(h), for some h ∈ G. Pick m ∈ θ(N).
Then m = θ(n), for some n ∈ N . We have

gmg−1 = θ(h)θ(n)θ(h)−1

= θ(hnh−1).
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Now hnh−1 ∈ N as N is normal. So gmg−1 ∈ θ(N) and θ(N) is normal
in G.
8. Note that S3 is the group of permutations of three objects. So we
want to find three things on which G acts. Pick any element h of G.
Then the order of h divides the order of G. As the order of G is six, it
follows that the order of h is one, two, three, or six. It cannot be six,
as then G would be cyclic, whence abelian, and it can only be one if h
is the identity.
We first try to prove that G contains an element of order 2. Suppose
not. Let a be an element of G, not the identity. Then H1 = 〈a〉 =
{ e, a, a2 } contains three elements. Pick an element b of G not an
element of H1. Then H2 = 〈b〉 = { e, b, b2 } contains three elements,
two of which, b and b2, are not elements of H1. Thus H1 ∪H2 has five
elements. The last element c of G must have order two, a contradiction.
Thus G contains an element of order 2.
Suppose that a has order two. Let H = 〈a〉 = { e, a }, a subgroup of G
of order two. Pick an element b which does no belong to H. Consider
the group generated by a and b, K = 〈a, b〉. This has at least three
elements, e, a and b. The order of K divides G, so that K has order
3 or 6, by Lagrange. K contains H, so that the order of K is even. It
follows that K has order 6, so that G = 〈a, b〉. As G is not abelian, a
and b don’t commute, ab 6= ba.
The number of left cosets of H in G (the index of H in G) is equal to
three, by Lagrange. Let S be the set of left cosets. Define a map from
G to A(S) as follows,

φ : G −→ A(S)

by sending g to σ = φ(g), where σ is the map,

σ : S −→ S

σ(xH) = gxH, that is, σ acts on the left cosets by left multiplication
by g. Suppose that xH = yH, then y = xh and (gy) = (gx)h so that
(gx)H = (gy)H and φ is well-defined. σ is a bijection, as its inverse
τ is given by left multiplication by g−1. Now we check that φ is a
homomorphism. Suppose that g1 and g2 are two elements of G. Set
σi = φ(gi) and let τ = φ(g1g2). We need to check that τ = σ1σ2. Pick
a left coset xH. Then

σ1σ2(xH) = σ1(g2xH)

= g1g2xH

= τ(xH).
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Thus φ is a homomorphism. We check that φ is injective. It suffices to
prove that the kernel of φ is trivial. Pick g ∈ Kerφ. Then σ = φ(g) is
the identity permutation, so that for every left coset xH,

gxH = xH.

Consider the left coset H. Then gH = H. It follows that g ∈ H, so
that either g = e or g = a. If g = a, then consider the left coset bH.
We would then have abH = bH, so that ab = bh′, where h′ ∈ H. So
h′ = e or h′ = a. If h′ = e, then ab = b, and a = e, a contradiction.
Otherwise ab = ba, a contradiction. Thus g = e, the kernel of φ is
trivial and φ is injective.
As both G and A(S) have order six and φ is injective, it follows that
φ is a bijection. Hence G is isomorphic to S3.
9. Let G be a group of order nine. Let g ∈ G be an element of G.
Then the order of g divides the order of G. Thus the order of g is 1, 3
or 9. If G is cyclic then G is certainly abelian. Thus we may assume
that there is no element of order nine. On the other hand the order of
g is one iff g = e.
Thus we may assume that every element of G, other than the identity,
has order three. Let a ∈ G be an element of G, other than the identity.
Let H = 〈a〉. Then H has order three. Let S be the set of left cosets
of H in G. By Lagrange S has three elements. Let

φ : G −→ A(S) ' S3

be the map given by left multiplication. As in question 8, φ is a group
homomorphism. Let G′ be the order of the image. Then G′ divides the
order of G, by Lagrange and it also divides the order of S3. Thus G′

must have order three. It follows that the kernel of φ has order three.
Thus the kernel of φ is H and H is a normal subgroup of G.
Let b ∈ G be any element of G. Then bab−1 must be an element of
H, as H is normal in G. It is clear that bab−1 6= e. If bab−1 = a then
ba = ab, so that a and b commute. If bab−1 = a2 then

b−1ab = b2ab−2

= b(bab−1)b−1

= ba2b−1

= (bab−1)(bab−1)

= a,

and so ab = ba. Therefore G is abelian.
10. Let S be the set of left cosets of H in G. Define a map

φ : G −→ A(S)
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by sending g ∈ G to the permutation σ ∈ A(S), a map

S −→ S

defined by the rule σ(aH) = gaH. As in question 8, φ is a homomor-
phism.
Let N be the kernel of φ. Then N is normal in G. Suppose that
n ∈ N and let σ = φ(n). Then σ is the identity permutation of S. In
particular σ(H) = H, so that nH = H. Thus n ∈ H and so N ⊂ H.
Let n be the index of H, so that the image of G has at most n! elements.
In this case there are at most n! left cosets of N in G, since each left
coset of N in G is mapped to a different element of A(S).
11. Let A be the set of elements such that φ(a) = a−1. Pick an element
g ∈ G and let B = g−1A. Then

|A ∩B| = |A|+ |B| − |A ∪B|
> (3/4)|G|+ (3/4)|G| − |G|
= (1/2)|G|.

Now suppose that g ∈ A. If h ∈ A ∩B then gh ∈ A. It follows that

h−1g−1 = (gh)−1

= φ(gh)

= φ(g)φ(h)

= g−1h−1.

Taking inverses, we see that g and h must commute. Let C be the
centraliser of g. Then A ∩ B ⊂ C, so that C contains more than half
the elements of G. On the other hand, C is a subgroup of G. By
Lagrange the order of C divides the order of G. Thus C = G. Hence g
is in the centre Z of G and so the centre Z of G contains at least 3/4
of the elements of G. But then the centre of G must also equal G, as
it is also a subgroup of G. Thus G is abelian.
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