
MODEL ANSWERS TO HWK #3

1. (a) (
1 2 3 4 5 6
4 5 2 1 3 6

)
.

The cycle decomposition is

(1, 4)(2, 5, 3)

and so the order is 6.
(b) (

1 2 3 4 5
3 1 2 4 5

)
.

The cycle decomposition is

(1, 3, 2)

and so the order is 3.
(c) (

1 2 3 4 5
1 4 3 2 5

)
.

The cycle decomposition is

(2, 4)

and so the order is 2.
2. As σ and τ are cycles, we may find integers a1, a2, . . . , ak and
b1, b2, . . . , bl such that σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , bl). To
say that σ and τ are disjoint cycles is equivalent to saying that the two
sets S = {a1, a2, . . . , ak} and T = {b1, b2, . . . , bl} are disjoint.
We want to prove that

στ = τσ.

As both sides of this equation are permutations of the first n natural
numbers, it suffices to show that they have the same effect on any
integer 1 ≤ j ≤ n.
If j is not in S ∪ T , then there is nothing to prove; both sides clearly
fix j. Otherwise j ∈ S ∪ T . By symmetry we may asume j ∈ S. As S
and T are disjoint, it follows that j /∈ T .
As j ∈ S, j = ai, some i. Then σ(ai) = ai+1, where we take i + 1
modulo k (that is, we adopt the convention that ak+1 = a1). In this
case ai+1 ∈ S so ai+1 /∈ T as well. Thus both sides send j = ai to ai+1.
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Thus both sides have the same effect on j, regardless of j and so

στ = τσ.

3. (i)

(1, 3, 4, 2)(5, 7, 9),

which has order 12.
(ii)

(1, 7)(2, 6)(3, 5),

which has order 2.
(iii)

(1, 6)(2, 5)(3, 7),

which has order 2.
4.

(2, 4, 1)(3, 5, 7, 6) = (2, 1)(2, 4)(3, 6)(3, 7)(3, 5).

The order is 12.
(f)

(1, 4, 2, 5, 3) = (1, 3)(1, 5)(1, 2)(1, 4).

The order is 5.
5. The conjugate is (2, 7, 5, 3)(1, 6, 4). The order of σ is 12 and the
order of τ is three.
6. There are quite a few possibilities for τ . One obvious one is

τ =

(
1 2 3 4 5 6 7
3 1 2 5 4 7 6

)
.

7. Let H = 〈(1, 2)(1, 2, 3, . . . , n)〉. We want to show that H is the
whole of Sn. As the transpositions generate Sn, it suffices to prove
that every transposition is in H.
Now the idea is that it is very hard to compute products in Sn, but it
is easy to compute conjugates. So instead of using the fact that H is
closed under products and inverses, let us use the fact that it is closed
under taking conjugates (clear, as a conjugate is a product of elements
of H and their inverses).
Since conjugation preserves cycle type, we start with the transposition
σ = (1, 2) (in fact this is the only place to start).
To warm up, consider conjugating σ with τ = (1, 2, 3, . . . , n). The
conjugate is (2, 3). Thus H must contain (2, 3).
Given that H contains (2, 3) it must contain the conjugate of (2, 3) by
τ , which is (3, 4) (or what comes to the same thing, H must contain
the conjugate of (1, 2) by τ 2).
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Continuing in this way, it is clear that H (by an easy induction in fact)
must contain every transposition of the form (i, i+1) and of course the
last one, (n, 1) = (1, n).
There are now two ways to show that H = Sn.
The first is to complete the proof that H must contain every transposi-
tion. First, let us try to show that H contains every transposition of the
form (1, i). For example, to get (1, 3), start with (1, 2) and conjugate it
by (2, 3). Suppose, by way of induction, that H contains (1, i). Then
H must contain the conjugate of (1, i) by (i, i + 1) which is (1, i + 1).
Thus by induction H contains every transposition of the form (1, i).
Now we are almost home. First note that H must contain every trans-
position of the form (2, j). Indeed (2, j) is the conjugate of (1, j) by
the transposition (1, 2).
Now consider an arbitrary transposition (i, j). This is the conjugate of
(1, 2) by the element (1, i)(2, j). Thus H contains every transposition
and so H = Sn. This completes the first proof.
For the second proof we consider the second proof that the transposi-
tions generate Sn. We need to show that we can put any deck of cards,
in arbitrary order, into the standard order by only switching adjacent
cards. By induction on i, we may assume that the first i− 1 cards are
in the correct order. We may suppose that the ith card is in position
j > i (if it is in position i there is nothing to do). We need to check
that we can put card i in the jth position into the ith position, without
moving the first i − 1 cards. If we switch cards j and j − 1, then the
ith card is now in the j−1th position. Therefore switching cards cards
j and j − 1, then cards j − 1 and j − 2, . . . , and then cards i+ 1 and
i, card i now occupies the ith position and we haven’t moved the first
i − 1 cards (note though that the card that was in the ith position is
not now in the jth position; it is in position i+ 1).
This completes the induction on i. Thus one can undo any permuta-
tion just using the transpositions (i, i + 1) which is to say that these
transpositions generate Sn.
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