
MODEL ANSWERS TO HWK #2

1. (i) If h ∈ Z(G) if and only if gh = hg for all g ∈ H. But gh = gh if
and only if h ∈ Cg. Hence

Z(G) =
⋂
g∈G

Cg.

(ii) We already proved that each Cg is a subgroup of G and the inter-
section of subgroups is a subgroup so Z(G) is a subgroup.
2. As |a| = |a|, a ∼ a and ∼ is reflexive. If a ∼ b then |a| = |b|. But
then |b| = |a| and b ∼ a. So ∼ is symmetric. Finally, if a ∼ b and b ∼ c
then |a| = |b| and |b| = |c|. It follows that |a| = |c| so that a ∼ c.
The equivalence classes are the circles centred at the origin.
3. Let G be a group, with no proper subgroups. If G contains only one
element, there is nothing to prove. Otherwise pick an element a ∈ G,
not equal to the identity. Then H = 〈a〉 is a subgroup of G.
By assumption H 6= {e}. As G contains no proper subgroups, then
H = G. Thus G is cyclic.
There are two cases. Suppose that G is infinite. Consider b = a2. This
generates a proper subgroup H of G. In fact the elements of H are all
the elements of the form a2n, n ∈ Z. But then H is a proper subgroup
of G, a contradiction.
Thus G must have finite order. Suppose that the order n of G is not
prime. Then n = xy, where x and y are positive integers, and neither
is equal to one.
Let b = ax and look at the subgroup H generated by b. Note that the
elements of H are all of the form aix, where i ∈ Z. Indeed this set is
clearly closed under multiplication and taking inverses. Thus H is a
proper subgroup, as a /∈ H, for example. Again, this contradicts our
hypotheses on G.
So the order of G must be a prime.
Here is another way to argue, if G is finite, of order n. Let i be any
integer less than n. Consider the element b = ai. Then ai 6= e, so
the subgroup it generates, must be the whole of G. In particular the
element a must be power of b, so that bm = (ai)m = a. Thus

im = 1 mod n.

In this case i is coprime to n. As i was arbitrary, every integer less
than n is coprime to n. But then n is prime.
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4. First we write down the elements of U18. These will be the left
cosets, generated by integers coprime to 18. Of the integers between 1
and 17, those that are coprime are 1, 3, 5, 7, 11, 13 and 17.
Thus the elements of U18 are [1], [3], [5], [7], [11], [13] and [17]. We
calculate the order of these elements.
[1] is the identity, it has order one.
Consider [5].

[5]2 = [52] = [25] = [7],

as 25 = 7 mod 18. In this case

[53] = [5][52] = [5][7] = [35] = [17],

as 35 = 17 mod 18.
We could keep computing. But at this point, we can be a little more
sly. By Lagrange the order of g = [5] divides the order of G. As G has
order 6, the order of [5] is one of 1, 2, 3, or 6. As we have already seen
that the order is not 1, 2 or 3, by a process of elimination, we know
that [5] has order 6. (Or we could use the fact that [17] = [−1].)
As [17] = [5]3, [17]2 = [5]6 = [1]. So [17] has order 2. Similarly, as
[7] = [5]2, [7]3 = [5]6 = [1]. So the order of [7] divides 3. But then the
order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is
the inverse of [5]. It must then have order six. The other would then be
[5]4 and so this element would have order dividing 3, and so its order
would be 3. Let us see which is which.

[5][11] = [55] = [1]

Thus [11] is the inverse of [5] and so it has order 6. Thus [11] = [5]5.
It follows that [13] = [5]4 and so [13] has order 3.
Note that U18 is cyclic. In fact either [5] or [11] is a generator.
5. First we write down the elements of U20. Arguing as before, we get
[1], [3], [7], [9], [11], [13], [17] and [19].
We compute the order of [3].

[3]2 = [9].

[3]3 = [27] = [7].

[34] = [3][33] = [3][7] = [21] = [1].

So [3] and [7] are elements of order 4 and [9] is an element of order 2.
Now note that the other elements are the additive inverses of the ele-
ments we just wrote down. Thus for example

[17]2 = [−3]2 = [3]2 = [9].
2



So [17] and [13] have order 4 and [11] and [19] = [−1] have order 2.
Thus U20 is not cyclic.
6. The elements of D4 are { I, R,R2, R3, S1, S2, D1, D2 }, where R is
rotation through 90◦ degrees, clockwise, S1 and S2 are the two side
flips and D1, D2 are the two diagonal flips.
The order of any subgroup divides 8 by Lagrange. The divisors of 8
are 1, 2, 4 and 8. Two extreme cases are 1 and 8, in which case we get
the trivial subgroup {I} and the whole group D4.
A subgroup of order 2 is generated by an element of order 2. The
elements of order 2 are R2, S1, S2, D1 and D2. Accordingly there
are five subgroups of order 2, { I, R2 }, { I, S1 }, { I, S2 }, { I,D1 } and
{ I,D2 }.
A subgroup of order 4 can come in two possible flavours. If the sub-
group is cyclic it must be generated by an element of four. D4 contains
only two elements of order 4, R and R3 and they both generate the
same subgroup, { I, R,R2, R3 }. The final possibility is a subgroup of
order four that contains three elements of order 2.
We need to combine to consider the subgroup generated by two ele-
ments of order 2.
We first try to combine a side flip with a diagonal flip. By symmetry
we can consider S1 and D1. As S1D1 = R, the group generated by S1

and D1 must contain R, so that it must be the whole of D4.
Now consider combining rotations and flips. Note that F1F2 = R2 and
D1D2 = R2 by direct computation. We then try to see if

{I, F1, F2, R
2}

is a subgroup. As this is finite, it suffices to check that it is closed under
products. We look at pairwise products. If one of the terms is I this is
clear. We already checked F1F2. It remains to check F1R

2 and F2R
2.

Consider the equation F1F2 = R2. Multiplying by F1 on the left, and
using the fact that it is its own inverse, we get F2 = F1R

2. Similarly
all other products, of any two of F1, F2 and R2, gives the third. Thus

{I, F1, F2, R
2}

is a subgroup.
Similarly

{I,D1, D2, R
2}

is a subgroup.
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7. For every i, there is a unique bi which is the inverse of ai. Thus the
elements of G are both a1, a2, . . . , an and b1, b2, . . . , bn. Now

x2 = (a1a2 . . . an)(a1a2 . . . an)

= (a1a2 . . . an)(b1b2 . . . bn)

= (a1b1)(a2b2)(a3b3) · · · (anbn) = en = e,

where we used the fact that G is abelian to rearrange these products.
8. Suppose not, that is, suppose that there is a number a such that
a2 = −1 mod p. Let g = [a] ∈ Up. What is the order of g?
Well

g2 = [a]2 = [a2] = [−1] 6= [1],

and so
g4 = (g2)2 = [−1]2 = [1].

Thus g has order 4. But the order of any element divides the order of
the group, in this case p− 1 = 4n+ 2. But 4 does not divide 4n+ 2, a
contradiction.
9. Define

f : T −→ S

by the rule
f(Ha) = a−1H.

The key point is to check that f is well-defined. The problem is that
if b ∈ Ha then Ha = Hb and we have to check that a−1H = b−1H.
As b ∈ Ha, we have b = ha. But then b−1 = a−1h−1. As H is a
subgroup h−1 ∈ H. But then b−1 ∈ a−1H so that a−1H = b−1H and f
is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

g : S −→ T

by the rule
g(aH) = Ha−1.

We have to show that g is well-defined. This follows similarly to the
proof that f is well-defined.
We now that g is the inverse of f .

(g ◦ f)(Ha) = g(f(Ha))

= g(a−1H)

= H(a−1)−1

= Ha.

Therefore g ◦ f is the identity. Similarly f ◦ g is the identity. It follows
that f is a bijection.
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10. Let [a]L denote the left-coset generated by a and let [a]R denote
the right-coset generated by a. Suppose that b ∈ [a]L. Then [a]L = [b]L
and so aH = bH. By assumption Ha = Hb. But then [a]R = [b]R and
so b ∈ [a]R.
As b is an arbitrary element of [a]L, it follows that [a]L ⊂ [a]R. In other
words aH ⊂ Ha. Multiplying both sets on the right by a−1 we get the
inclusion

aHa−1 ⊂ H(aa−1) = H.

Now this is valid for any a ∈ G, so that

bHb−1 ⊂ H.

for all b ∈ G. Take b = a−1. Then

a−1Ha ⊂ H,

so that multipying on the left by a, we get

Ha ⊂ aH.

Thus Ha = aH and aHa−1 = H.
11. Let m = an− 1. Then φ(m) is the order of the group generated by
G = Um. It suffices to exhibit an element g of G of order n.
Set g = [a]. Now

gn = [a]n = [an] = [m+ 1] = [1].

So the order of g divides n. On the other hand ai < m, for any i < n
so that

gi = [ai] 6= [1].

Thus the order of g is n and so n divides m by Lagrange.
12. Let G be a cyclic group of order n, and let g ∈ G be a generator
of G. Suppose h ∈ G. Then h = gi, for some i.
I claim that h has order m iff i = kj, where k = n/m and j is coprime
to m.
Suppose that i = kj. Then

hm = (gi)m = gkjm = gjn = e.

Now suppose that a < m and consider ha = gakj. This is equal to
the identity iff akj is divisible by n. Dividing by k, this is the same
as saying that aj is divisible by m. As j is coprime to m, this would
mean that m divides a, impossible.
This establishes the claim. The number of integers of the form kj,
where j is coprime to m, is equal to the number of integers j coprime
to m (and less than m) which is φ(m).
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13. Let G be a cyclic group of order n. Partition the elements of G
into subsets Am, where Am consists of all elements of order m. Then

n = |G|

= |
⋃
m|n

Am|

=
∑
m|n

|Am| =
∑
m|n

φ(m).

14. Let G be the set of all complex numbers of the form

exp
( a

2m

)
,

where a is an integer, m ∈ N is a natural number and

exp(x) = e2πix.

We first check that G is a group under multiplication of complex num-
bers. As G is a subset of the group C∗, it suffices to check that G is
non-empty, and closed under multiplication and inverses. It is clearly
non-empty, for example,

1 = exp(0) ∈ G.

If

exp
( a

2m

)
and exp

(
b

2n

)
,

then first note we may assume that m = n (multiply a and b by appro-
priate powers of 2). In this case the product

exp
( a

2n

)
exp

(
b

2n

)
= exp

(
a+ b

2n

)
∈ G.

Therefore G is closed under multiplication. Similarly the inverse of

exp
( a

2m

)
is exp

(
−a
2m

)
∈ G,

and so G is closed under inverses. Thus G is a group.
Suppose that H is a subgroup of G which contains

g = exp
( a

2m

)
where a is odd. As a and 2m are coprime, we may find integers p and
q such that

pa+ q2m = 1.
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As H is closed under multiplication and inverses, H must contain

gp = exp
( pa

2m

)
= exp

(
pa+ q2m

2m

)
= exp

(
1

2m

)
.

But then H must contain the finite set

Hm = { exp

(
i

2m

)
| 0 ≤ i ≤ 2m − 1 },

(which one may check is in fact a subgroup).
Note that if m ≤ l then Hm ⊂ Hl. Furthermore,

G =
⋃
m∈N

Hm.

Now suppose that H is infinite. If m is a natural number then H is not
contained in Hm, since Hm is finite. But then H contains an element
g ∈ Hl not in Hm. Let l be the smallest integer such that g ∈ Hl. Then

g = exp
( a

2l

)
,

where a is odd. But then H contains Hl so that it contains Hm. As m
is arbitrary H = G.
So G contains no proper infinite subgroups.

7


