MODEL ANSWERS TO HWK \#2

1. (i) If $h \in Z(G)$ if and only if $g h=h g$ for all $g \in H$. But $g h=g h$ if and only if $h \in C_{g}$. Hence

$$
Z(G)=\bigcap_{g \in G} C_{g}
$$

(ii) We already proved that each C_{g} is a subgroup of G and the intersection of subgroups is a subgroup so $Z(G)$ is a subgroup.
2. As $|a|=|a|, a \sim a$ and \sim is reflexive. If $a \sim b$ then $|a|=|b|$. But then $|b|=|a|$ and $b \sim a$. So \sim is symmetric. Finally, if $a \sim b$ and $b \sim c$ then $|a|=|b|$ and $|b|=|c|$. It follows that $|a|=|c|$ so that $a \sim c$.
The equivalence classes are the circles centred at the origin.
3. Let G be a group, with no proper subgroups. If G contains only one element, there is nothing to prove. Otherwise pick an element $a \in G$, not equal to the identity. Then $H=\langle a\rangle$ is a subgroup of G.
By assumption $H \neq\{e\}$. As G contains no proper subgroups, then $H=G$. Thus G is cyclic.
There are two cases. Suppose that G is infinite. Consider $b=a^{2}$. This generates a proper subgroup H of G. In fact the elements of H are all the elements of the form $a^{2 n}, n \in \mathbb{Z}$. But then H is a proper subgroup of G, a contradiction.
Thus G must have finite order. Suppose that the order n of G is not prime. Then $n=x y$, where x and y are positive integers, and neither is equal to one.
Let $b=a^{x}$ and look at the subgroup H generated by b. Note that the elements of H are all of the form $a^{i x}$, where $i \in \mathbb{Z}$. Indeed this set is clearly closed under multiplication and taking inverses. Thus H is a proper subgroup, as $a \notin H$, for example. Again, this contradicts our hypotheses on G.
So the order of G must be a prime.
Here is another way to argue, if G is finite, of order n. Let i be any integer less than n. Consider the element $b=a^{i}$. Then $a^{i} \neq e$, so the subgroup it generates, must be the whole of G. In particular the element a must be power of b, so that $b^{m}=\left(a^{i}\right)^{m}=a$. Thus

$$
i m=1 \quad \bmod n .
$$

In this case i is coprime to n. As i was arbitrary, every integer less than n is coprime to n. But then n is prime.
4. First we write down the elements of U_{18}. These will be the left cosets, generated by integers coprime to 18 . Of the integers between 1 and 17 , those that are coprime are $1,3,5,7,11,13$ and 17 .
Thus the elements of U_{18} are [1], [3], [5], [7], [11], [13] and [17]. We calculate the order of these elements.
[1] is the identity, it has order one.
Consider [5].

$$
[5]^{2}=\left[5^{2}\right]=[25]=[7],
$$

as $25=7 \bmod 18$. In this case

$$
\left[5^{3}\right]=[5]\left[5^{2}\right]=[5][7]=[35]=[17],
$$

as $35=17 \bmod 18$.
We could keep computing. But at this point, we can be a little more sly. By Lagrange the order of $g=[5]$ divides the order of G. As G has order 6 , the order of $[5]$ is one of $1,2,3$, or 6 . As we have already seen that the order is not 1,2 or 3 , by a process of elimination, we know that [5] has order 6 . (Or we could use the fact that $[17]=[-1]$.) As $[17]=[5]^{3},[17]^{2}=[5]^{6}=[1]$. So [17] has order 2. Similarly, as $[7]=[5]^{2},[7]^{3}=[5]^{6}=[1]$. So the order of [7] divides 3. But then the order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is the inverse of [5]. It must then have order six. The other would then be $[5]^{4}$ and so this element would have order dividing 3 , and so its order would be 3 . Let us see which is which.

$$
[5][11]=[55]=[1]
$$

Thus [11] is the inverse of [5] and so it has order 6. Thus $[11]=[5]^{5}$. It follows that $[13]=[5]^{4}$ and so [13] has order 3 .
Note that U_{18} is cyclic. In fact either [5] or [11] is a generator.
5. First we write down the elements of U_{20}. Arguing as before, we get [1], [3], [7], [9], [11], [13], [17] and [19].
We compute the order of [3].

$$
\begin{gathered}
{[3]^{2}=[9] .} \\
{[3]^{3}=[27]=[7] .} \\
{\left[3^{4}\right]=[3]\left[3^{3}\right]=[3][7]=[21]=[1] .}
\end{gathered}
$$

So [3] and [7] are elements of order 4 and [9] is an element of order 2. Now note that the other elements are the additive inverses of the elements we just wrote down. Thus for example

$$
[17]^{2}=[-3]_{2}^{2}=[3]^{2}=[9]
$$

So [17] and [13] have order 4 and [11] and $[19]=[-1]$ have order 2. Thus U_{20} is not cyclic.
6. The elements of D_{4} are $\left\{I, R, R^{2}, R^{3}, S_{1}, S_{2}, D_{1}, D_{2}\right\}$, where R is rotation through 90° degrees, clockwise, S_{1} and S_{2} are the two side flips and D_{1}, D_{2} are the two diagonal flips.
The order of any subgroup divides 8 by Lagrange. The divisors of 8 are $1,2,4$ and 8 . Two extreme cases are 1 and 8 , in which case we get the trivial subgroup $\{I\}$ and the whole group D_{4}.
A subgroup of order 2 is generated by an element of order 2. The elements of order 2 are $R^{2}, S_{1}, S_{2}, D_{1}$ and D_{2}. Accordingly there are five subgroups of order $2,\left\{I, R^{2}\right\},\left\{I, S_{1}\right\},\left\{I, S_{2}\right\},\left\{I, D_{1}\right\}$ and $\left\{I, D_{2}\right\}$.
A subgroup of order 4 can come in two possible flavours. If the subgroup is cyclic it must be generated by an element of four. D_{4} contains only two elements of order $4, R$ and R^{3} and they both generate the same subgroup, $\left\{I, R, R^{2}, R^{3}\right\}$. The final possibility is a subgroup of order four that contains three elements of order 2 .
We need to combine to consider the subgroup generated by two elements of order 2 .
We first try to combine a side flip with a diagonal flip. By symmetry we can consider S_{1} and D_{1}. As $S_{1} D_{1}=R$, the group generated by S_{1} and D_{1} must contain R, so that it must be the whole of D_{4}.
Now consider combining rotations and flips. Note that $F_{1} F_{2}=R^{2}$ and $D_{1} D_{2}=R^{2}$ by direct computation. We then try to see if

$$
\left\{I, F_{1}, F_{2}, R^{2}\right\}
$$

is a subgroup. As this is finite, it suffices to check that it is closed under products. We look at pairwise products. If one of the terms is I this is clear. We already checked $F_{1} F_{2}$. It remains to check $F_{1} R^{2}$ and $F_{2} R^{2}$. Consider the equation $F_{1} F_{2}=R^{2}$. Multiplying by F_{1} on the left, and using the fact that it is its own inverse, we get $F_{2}=F_{1} R^{2}$. Similarly all other products, of any two of F_{1}, F_{2} and R^{2}, gives the third. Thus

$$
\left\{I, F_{1}, F_{2}, R^{2}\right\}
$$

is a subgroup.
Similarly

$$
\left\{I, D_{1}, D_{2}, R^{2}\right\}
$$

is a subgroup.
7. For every i, there is a unique b_{i} which is the inverse of a_{i}. Thus the elements of G are both $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Now

$$
\begin{aligned}
x^{2} & =\left(a_{1} a_{2} \ldots a_{n}\right)\left(a_{1} a_{2} \ldots a_{n}\right) \\
& =\left(a_{1} a_{2} \ldots a_{n}\right)\left(b_{1} b_{2} \ldots b_{n}\right) \\
& =\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)\left(a_{3} b_{3}\right) \cdots\left(a_{n} b_{n}\right)=e^{n}=e,
\end{aligned}
$$

where we used the fact that G is abelian to rearrange these products. 8. Suppose not, that is, suppose that there is a number a such that $a^{2}=-1 \bmod p$. Let $g=[a] \in U_{p}$. What is the order of g ?
Well

$$
g^{2}=[a]^{2}=\left[a^{2}\right]=[-1] \neq[1],
$$

and so

$$
g^{4}=\left(g^{2}\right)^{2}=[-1]^{2}=[1] .
$$

Thus g has order 4. But the order of any element divides the order of the group, in this case $p-1=4 n+2$. But 4 does not divide $4 n+2$, a contradiction.
9. Define

$$
f: T \longrightarrow S
$$

by the rule

$$
f(H a)=a^{-1} H .
$$

The key point is to check that f is well-defined. The problem is that if $b \in H a$ then $H a=H b$ and we have to check that $a^{-1} H=b^{-1} H$.
As $b \in H a$, we have $b=h a$. But then $b^{-1}=a^{-1} h^{-1}$. As H is a subgroup $h^{-1} \in H$. But then $b^{-1} \in a^{-1} H$ so that $a^{-1} H=b^{-1} H$ and f is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

$$
g: S \longrightarrow T
$$

by the rule

$$
g(a H)=H a^{-1}
$$

We have to show that g is well-defined. This follows similarly to the proof that f is well-defined.
We now that g is the inverse of f.

$$
\begin{aligned}
(g \circ f)(H a) & =g(f(H a)) \\
& =g\left(a^{-1} H\right) \\
& =H\left(a^{-1}\right)^{-1} \\
& =H a .
\end{aligned}
$$

Therefore $g \circ f$ is the identity. Similarly $f \circ g$ is the identity. It follows that f is a bijection.
10. Let $[a]_{L}$ denote the left-coset generated by a and let $[a]_{R}$ denote the right-coset generated by a. Suppose that $b \in[a]_{L}$. Then $[a]_{L}=[b]_{L}$ and so $a H=b H$. By assumption $H a=H b$. But then $[a]_{R}=[b]_{R}$ and so $b \in[a]_{R}$.
As b is an arbitrary element of $[a]_{L}$, it follows that $[a]_{L} \subset[a]_{R}$. In other words $a H \subset H a$. Multiplying both sets on the right by a^{-1} we get the inclusion

$$
a H a^{-1} \subset H\left(a a^{-1}\right)=H .
$$

Now this is valid for any $a \in G$, so that

$$
b H b^{-1} \subset H .
$$

for all $b \in G$. Take $b=a^{-1}$. Then

$$
a^{-1} H a \subset H,
$$

so that multipying on the left by a, we get

$$
H a \subset a H .
$$

Thus $H a=a H$ and $a H a^{-1}=H$.
11. Let $m=a^{n}-1$. Then $\phi(m)$ is the order of the group generated by $G=U_{m}$. It suffices to exhibit an element g of G of order n.
Set $g=[a]$. Now

$$
g^{n}=[a]^{n}=\left[a^{n}\right]=[m+1]=[1] .
$$

So the order of g divides n. On the other hand $a^{i}<m$, for any $i<n$ so that

$$
g^{i}=\left[a^{i}\right] \neq[1] .
$$

Thus the order of g is n and so n divides m by Lagrange.
12. Let G be a cyclic group of order n, and let $g \in G$ be a generator of G. Suppose $h \in G$. Then $h=g^{i}$, for some i.
I claim that h has order m iff $i=k j$, where $k=n / m$ and j is coprime to m.
Suppose that $i=k j$. Then

$$
h^{m}=\left(g^{i}\right)^{m}=g^{k j m}=g^{j n}=e .
$$

Now suppose that $a<m$ and consider $h^{a}=g^{a k j}$. This is equal to the identity iff $a k j$ is divisible by n. Dividing by k, this is the same as saying that $a j$ is divisible by m. As j is coprime to m, this would mean that m divides a, impossible.
This establishes the claim. The number of integers of the form $k j$, where j is coprime to m, is equal to the number of integers j coprime to m (and less than m) which is $\phi(m)$.
13. Let G be a cyclic group of order n. Partition the elements of G into subsets A_{m}, where A_{m} consists of all elements of order m. Then

$$
\begin{aligned}
n & =|G| \\
& =\left|\bigcup_{m \mid n} A_{m}\right| \\
& =\sum_{m \mid n}\left|A_{m}\right|=\sum_{m \mid n} \phi(m) .
\end{aligned}
$$

14. Let G be the set of all complex numbers of the form

$$
\exp \left(\frac{a}{2^{m}}\right)
$$

where a is an integer, $m \in \mathbb{N}$ is a natural number and

$$
\exp (x)=e^{2 \pi i x}
$$

We first check that G is a group under multiplication of complex numbers. As G is a subset of the group \mathbb{C}^{*}, it suffices to check that G is non-empty, and closed under multiplication and inverses. It is clearly non-empty, for example,

$$
1=\exp (0) \in G
$$

If

$$
\exp \left(\frac{a}{2^{m}}\right) \quad \text { and } \quad \exp \left(\frac{b}{2^{n}}\right)
$$

then first note we may assume that $m=n$ (multiply a and b by appropriate powers of 2). In this case the product

$$
\exp \left(\frac{a}{2^{n}}\right) \exp \left(\frac{b}{2^{n}}\right)=\exp \left(\frac{a+b}{2^{n}}\right) \in G
$$

Therefore G is closed under multiplication. Similarly the inverse of

$$
\exp \left(\frac{a}{2^{m}}\right) \quad \text { is } \quad \exp \left(\frac{-a}{2^{m}}\right) \in G
$$

and so G is closed under inverses. Thus G is a group. Suppose that H is a subgroup of G which contains

$$
g=\exp \left(\frac{a}{2^{m}}\right)
$$

where a is odd. As a and 2^{m} are coprime, we may find integers p and q such that

$$
p a+q 2_{6}^{m}=1
$$

As H is closed under multiplication and inverses, H must contain

$$
g^{p}=\exp \left(\frac{p a}{2^{m}}\right)=\exp \left(\frac{p a+q 2^{m}}{2^{m}}\right)=\exp \left(\frac{1}{2^{m}}\right)
$$

But then H must contain the finite set

$$
H_{m}=\left\{\left.\exp \left(\frac{i}{2^{m}}\right) \right\rvert\, 0 \leq i \leq 2^{m}-1\right\}
$$

(which one may check is in fact a subgroup).
Note that if $m \leq l$ then $H_{m} \subset H_{l}$. Furthermore,

$$
G=\bigcup_{m \in \mathbb{N}} H_{m} .
$$

Now suppose that H is infinite. If m is a natural number then H is not contained in H_{m}, since H_{m} is finite. But then H contains an element $g \in H_{l}$ not in H_{m}. Let l be the smallest integer such that $g \in H_{l}$. Then

$$
g=\exp \left(\frac{a}{2^{l}}\right),
$$

where a is odd. But then H contains H_{l} so that it contains H_{m}. As m is arbitrary $H=G$.
So G contains no proper infinite subgroups.

