MODEL ANSWERS TO HWK \#11

1. By Gauss' Lemma, it suffices to prove that $x^{3}-3 x+2$ is irreducible over \mathbb{Z}. Suppose not. Then it must factor as

$$
x^{3}+3 x-2=(x+a)\left(x^{2}+b x+c\right),
$$

where a, b and c are all integers. It follows that $a c=2$, so that a divides 2. In this case, either ± 1 or ± 2 would be a root of $x^{3}-3 x+2$. We compute
$1^{3}+3-2=2, \quad(-1)^{3}-3-2=-6, \quad 2^{3}+6-2=12, \quad(-2)^{3}-6-2=-16$.
So $\pm 1, \pm 2$ are not roots of $x^{3}-3 x+2$. Hence this polynomial is irreducible over \mathbb{Q}.
2. By Gauss' Lemma it suffices to prove that $f(x)$ is irreducible over the integers for infinitely many a. Let a be any integer which is divisible either by 3 and not by 9 , or divisible by 5 and not divisible by 25 . By Eisenstein's criterion, applied to $f(x)$ with $p=3$ or $p=5$ as appropriate, it follows that $f(x)$ is irreducible. On the other hand there are clearly infinitely many such choices of a.
3. By Gauss' Lemma it suffices to prove that $f(x)$ is irreducible over \mathbb{Z}. Suppose not, suppose that $f=g h$. Reducing modulo p we have

$$
\bar{a}_{0}=\bar{f}=\bar{g} \bar{h}
$$

Thus \bar{g} and \bar{h} are constant polynomials. It follows that the leading coeffcients b_{d} and c_{e} must be divisible by p. But then $a_{n}=b_{d} c_{e}$ is divisible by p^{2}, a contradiction.
4. See the lecture notes.
5. (i) Let $\phi: R \longrightarrow S$ be an isomorphism of rings. It is clear that $r \in R$ is irreducible if and only if $\phi(r)$ inS is irreducible.
(ii) Clear.
6. By the universal property of a polynomial ring, there is a unique ring homomorphism

$$
\phi: F[x] \longrightarrow F[x]
$$

which sends x to $b x+c$ and which fixes F. Thus it suffices to find the inverse map. Let

$$
\psi: F[x] \longrightarrow F[x]
$$

by the unique ring homomorphism which sends x to $(x-c) / b$ (and fixes $F)$. The composition sends x to x and by uniqueness the composition is therefore the identity. Thus ϕ is an automorphism.
7. By the uniqueness part of the universal property, it suffices to prove that the image of x has degree one, since if x is sent to $g(x)$, then $f(x)$ is sent to $f(g(x))$, which has degree the product of the degrees of f and g.
Suppose that ϕ is an automorphism of $F[x]$. Note that $F \cup\{x\}$ generates $F[x]$ as a ring. Thus $\phi(x)$ must have the same property. But if $g(x)$ is any element of $F[x]$ the ring generated by $g(x)$ and F is equal to the set of all polynomials of the form $f(g(x))$. Any such polynomial has degree the product of the degrees. Thus to get degree one polynomials, the degree of $g(x)$ must be one. Thus $\phi(x)$ must have degree one, so that $\phi(x)=b x+c, b \neq 0, c \in F$.
8. (i) Let $b=-1$ and $c=0$. Then $\phi(x)=-x$ is an automorphism of order two.
(ii) Let ζ be a primitive nth root of unity. That is to say, pick $\zeta \in \mathbb{C}$ such that

$$
\zeta^{n}=1
$$

whilst no smaller power is equal to one. For example

$$
\zeta=e^{\frac{2 \pi i}{n}}
$$

will do. Let $\phi(x)=\zeta x$. Then $\phi(x)$ is an automorphism by 6 . Clearly ϕ^{n} is the identity, but if $m<n$, then ϕ^{m} is not, as $\phi^{m}(1)=\zeta^{m} \neq 1$. Thus ϕ is an automorphism of order n.
9. (i) By the binomial theorem

$$
(a+b)^{p}=\sum_{i}\binom{p}{i} a^{i} b^{n-i}
$$

in any commutative ring. It suffices to observe that the natural number

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!}
$$

is divisibe by p if $0<i<p$.
(ii) We have

$$
\phi(a+b)=(a+b)^{q}=a^{q}+b^{q},
$$

by (i) and an obvious induction. As

$$
\phi(1)=1 \quad \text { and } \quad \phi(a b)=a^{p} b^{p},
$$

ϕ is a ring homomorphism.
(iii) $a^{q}=0$ if and only if $a=0$ so that the kernel of ϕ is $\{0\}$.
(iv) Since every injective map between two finite sets of the same cardinality is always a bijection, this is clear.
10. Let $F=\mathbb{F}_{p}(t)$ the field of rational functions with coeffcients in \mathbb{F}_{p}. Suppose that

$$
(f(t))^{p}=\phi(f)=t .
$$

If

$$
f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}
$$

then

$$
f(t)^{p}=a_{n}^{p} t^{n p}+a_{n-1}^{p} t^{p(n-1)}+\cdots+a_{0}^{p}
$$

has degree $n p$, a contradiction. Thus t is not in the image of ϕ.

