
MODEL ANSWERS TO HWK #10

1. (i) As x+ 4 has degree one, either it divides x3−6x+ 7 or these two
polynomials are coprime. But if x+ 4 divides x3− 6x+ 7 then x = −4
is a root of x3 − 6x+ 7, which it obviously is not. Thus the gcd is 1.
(ii) We have x7 − x4 = x4(x3 − 1). Hence

x7 − x4 + x3 − 1 = x4(x3 − 1) + x3 − 1

= (x3 − 1)(x4 + 1).

Thus the gcd is x3 − 1.
2. We will repeatedly use the fact that if a polynomial of degree at
most three is not irreducible, it must in fact have a root, as it must
have a linear factor.
(i) x2 + 7 cannot have a root over R as a2 + 7 ≥ 7, for all a ∈ R.
(ii) This is slightly tricky. Probably the best way to proceed is as
follows. Suppose that a/b ∈ Q is a root, where a and b are coprime
integers. We have

(a/b)3 − 3(a/b) + 3 = 0.

Multiplying through by b3 gives,

a3 − 3ab2 + 3b3 = 0.

Reducing modulo three, it follows that a is divisible by 3. Thus a = 3c,
some c. Substituting, we have

(3c)3 − 32cb2 + 3b3 = 0.

Cancelling one power of 3, we have

b3 − 3b2c+ 9c = 0.

Reducing modulo three again, we have that b is divisible by three. But
this contradicts the fact that a and b are chosen to be coprime.
(iii) It suffices to observe that 0 + 0 + 1 = 1 + 1 + 1 = 1 6= 0.
(iv) Note that we are asking if −1 is a square or not, in F19. As
(−a)2 = a2, it suffices to consider 0 ≤ a ≤ 9.

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16
52 = 25 = 6, 62 = 36 = −2, 72 = 49 = 11, 82 = 64 = 7, 92 = 81 = 5.

Thus x2 + 1 does not have a root and so it must be irreducible.
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(v) Again it suffices to check that 9 is not a cube root in F13. As
(−a)3 = −a3, it suffices to check that for 0 ≤ a ≤ 4, a3 6= ±9 = 9, 4.
We compute

03 = 0, 13 = 1, 23 = 8, 33 = 27 = 1 43 = 64 = 12.

(vi) We first check that x4 + 2x2 + 2 does not have any linear factors.
This is equivalent to checking that it does not have any roots, which is
clear as

a4 + 2a2 + 2 ≥ 2

for any real number a.
The only other possbility to eliminate is that it is a product of quadratic
factors. Suppose that

x4 + 2x2 + 2 = f(x)g(x),

where both f and g are quadratic. Moving the coefficient of x2 in f
from f to g, we might as well assume that f is monic, that is, that its
top coefficient is 1. In this case g is monic as well. Thus

x4 + 2x2 + 2 = (x2 + ax+ b)(x2 + cx+ d),

where a, b, c and d are rational numbers. Comparing coefficients of x3,
we get

a+ c = 0.

Renaming, we get

x4 + 2x2 + 2 = (x2 + ax+ b)(x2 − ax+ c).

Looking the coefficient of x, we get

ac− ab = 0.

Thus either a = 0 or b = c. Suppose a = 0. Replacing x2 by y, we get

y2 + 2y + 2 = (y + a)(y + b),

some a and b. In this case the polynomial y2 + 2y + 2 would have a
real root. But

y2 + 2y + 2 = (y + 1)2 + 1

so that if a ∈ R, we have

a2 + 2a+ 2 = (a+ 1)2 + 1 ≥ 1 > 0.

The only remaining possibility is that b = c. In this case b2 = 2, which
is impossible, as b is a rational number.
3. We apply Euclid’s algorithm. As the norm of 11 + 7i is greater than
8 − i, we first try to divide a = 8 − i into b = 11 + 7i. Let c be the
quotient in C. Now

aā = 64 + 1 = 65.
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Thus a−1 = 1
65
ā. Hence

c =
b

a
= a−1b

=
1

65
(bā)

=
1

65
(bā)

=
1

65
(bā)

=
1

65
(81 + 67i).

Clearly the closest gridpoint q to c is 1 + i. In this case

r = b− qa
= 11 + i− 9− 7i

= 4− 6i.

Thus

11 + 7i = (1 + i)(8− i) + (4− 6i).

We continue with 4 − 6i and 8 − i. Thus we now try to divide 4 − 6i
into 8− i. Note that

(8− i)− (4− 6i) = 4 + 5i.

It follows that we can take at the next step q = 1 and r = 4 + 5i, as
4 + 5i has smaller norm than 4− 6i. Thus

8− i = 1(4− 6i) + 4 + 5i.

Now we try to divide 4 + 5i into 4− 6i. The inverse of 4 + 5i is

1

41
(4− 5i).

Thus we look for a gridpoint close to

1

41
(4− 6i)(4− 5i) =

−1

41
(14 + 44).

Clearly we should take −i. In this case the remainder is

4− 6i+ i(4 + 5i) = −1− 2i.

We have

4− 6i = i(4 + 5i)− (1 + 2i).
3



We continue with 1+2i and 4+5i. In this case we can spot that q = 2,
so that

r = i.

As this is a unit, in fact the original numbers are coprime.
Aliter: Here is an entirely different way to proceed. Let q = a + bi
be a Gaussian prime. The norm of q is a2 + b2. Moreover if q divides
c + di then the norms must divide each other. Thus if 11 + 7i and
8− i have any common factors, then their norms must have a common
factor. The norm of the first number is 170 = 2 · 5 · 17 and the norm
of the second is 65 = 5 · 13. The only common factors are then 5.
It follows that

11 + 7i = p1p2p3,

where the norm of p1 is 2, the norm of p2 is 5 and the norm of p3 is 17.
Similarly

8− i = q1q2,

where the norm of q1 is 5 and the norm of q2 is 13. Of course the p’s
and the q’s are primes.
How does 5 factor in the Gaussian integers? Well

5 = 12 + 22 = (1 + 2i)(1− 2i).

Moreover 1+2i and 1−2i are not associates. Thus, since the Gaussian
integers are a UFD, the only possible common factors are 1 ± 2i, and
if one divides 8 − i (or 11 + 7i) then the other does not (as 5 divides
the norm, but not 52).
Now 8− i is divisible by 1− 2i. Indeed

8− i = (2 + 3i)(1− 2i).

Thus p2 = 1 − 2i. On the other hand, 11 + 7i is divisible by 1 + 2i.
Indeed

11 + 7i = (5− 3i)(1 + 2i).

Thus q1 = 1 + 2i. It follows that 11 + 7i and 8− i are coprime.
4. Let

φ : R −→ C
be the obvious inclusion. Applying the universal property of a polyno-
mial ring, define a ring homomorphism

φ : R[x] −→ C
by sending x to i. φ is obviously surjective as R ∪ {i} generates C.
Let I be the kernel. This is an ideal in R[x]. Therefore it must be
principal. On the other hand x2 +1 is clearly in the kernel and x2 +1 is
irreducible over R, whence prime. It follows that I = 〈x2+1〉, and that
I is a prime ideal. By the Isomorphism Theorem, the result follows.
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5. (i) To show that x2 + 1 is irreducible, it suffices to check that −1 is
not a square in F . We compute a2, 0 ≤ a ≤ 5. We have

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16 = 5, 52 = 25 = 3.

Thus x2 + 1 is irreducible. As F is a field, F [x] is a UFD. Thus x2 + 1
is prime. Thus I = 〈x2 + 1〉 is a prime ideal and so

L = F [x]/I,

is an integral domain.
I claim that every element of L is represented uniquely by a polynomial
of the form ax+ b, where a and b are in F .
First suppose that we have a coset g + I. By the division algorithm,
we may write

g = qf + r,

where the degree of r is at most one and f = p. Thus r = ax + b, for
some a and b and moreover g + I = r + I.
On the other hand if ax+b+I = cx+d+I, then (a−c)x+(b−d) ∈ I. On
the other hand, as I is generated by a polynomial of degree two, the only
non-zero elements of I have degree at least two. Thus (a−c)x+b−d = 0,
so that a = c and b = d. The claim follows.
In this case L has 121 = 112 elements. As L is finite, it is in fact a field
and we are done.
(ii) It suffices, repeating the argument above, to show that x3 + x + 4
is irreducible. To prove this we show it does not have any roots. We
compute

03 + 0 + 4 = 4 13 + 1 + 4 = 6
23 + 2 + 4 = 3 33 + 3 + 4 = 1
43 + 4 + 4 = 5 53 + 5 + 4 = 4

63 + 6 + 4 = −53 − 5 + 4 = 6 73 + 7 + 4 = −43 − 4 + 4 = 2
83 + 8 + 4 = −33 − 3 + 4 = 4 93 + 9 + 4 = −23 − 2 + 4 = 3

103 + 10 + 4 = −13 − 1 + 4 = 2.

6. Suppose that p1, p2, . . . , pn are irreducible polynomials. Then each
pi is not a constant polynomial, that is, its degree is at least one. Let

f = p1 · p2 · · · · · pn + 1.

As R = F [x] is a UFD it follows that f is a product of primes,
q1, q2, . . . , qm. As p1, p2, . . . , pn are irreducible they are prime. Now
pi divides the first term on the RHS but not the second, so that pi
does not divide f . Thus none of the primes q1, q2, . . . , qm are equal
to p1, p2, . . . , pn. Thus f is divisible by an irreducible polynomial, not
equal to one of p1, p2, . . . , pn.
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It follows that there are infinitely many irreducible polynomials. Let
m be the cardinality of F . As there are md+1 polynomials of degree at
most d, so that there are only finitely many polynomials of degree at
most d, there must be polynomials of arbitrarily large degree.
7. Let k be a field and let S be the infinite polynomial ring

k[u, v, y, x1, x2, . . .].

Let I be the ideal generated by x1y = uv and xi = x2i+1, i = 1, 2, . . . .
Let R be the ring S/I.
Consider a = uv ∈ R. Then u and v are clearly irreducible elements of
R. On the other hand a = x1y, x1 = x22, x2 = x23 and so on, x1, x2, . . .
are not units, so that a is a product of irreducibles, whilst at the other
time, one can run the factorisation algorithm, starting with a, so that
it never terminates.
8. I am not sure how to do this without using some techniques from a
little later in the course.
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