MODEL ANSWERS TO HWK \#10

1. (i) As $x+4$ has degree one, either it divides $x^{3}-6 x+7$ or these two polynomials are coprime. But if $x+4$ divides $x^{3}-6 x+7$ then $x=-4$ is a root of $x^{3}-6 x+7$, which it obviously is not. Thus the gcd is 1 .
(ii) We have $x^{7}-x^{4}=x^{4}\left(x^{3}-1\right)$. Hence

$$
\begin{aligned}
x^{7}-x^{4}+x^{3}-1 & =x^{4}\left(x^{3}-1\right)+x^{3}-1 \\
& =\left(x^{3}-1\right)\left(x^{4}+1\right) .
\end{aligned}
$$

Thus the gcd is $x^{3}-1$.
2. We will repeatedly use the fact that if a polynomial of degree at most three is not irreducible, it must in fact have a root, as it must have a linear factor.
(i) $x^{2}+7$ cannot have a root over \mathbb{R} as $a^{2}+7 \geq 7$, for all $a \in \mathbb{R}$.
(ii) This is slightly tricky. Probably the best way to proceed is as follows. Suppose that $a / b \in \mathbb{Q}$ is a root, where a and b are coprime integers. We have

$$
(a / b)^{3}-3(a / b)+3=0 .
$$

Multiplying through by b^{3} gives,

$$
a^{3}-3 a b^{2}+3 b^{3}=0
$$

Reducing modulo three, it follows that a is divisible by 3 . Thus $a=3 c$, some c. Substituting, we have

$$
(3 c)^{3}-3^{2} c b^{2}+3 b^{3}=0
$$

Cancelling one power of 3 , we have

$$
b^{3}-3 b^{2} c+9 c=0
$$

Reducing modulo three again, we have that b is divisible by three. But this contradicts the fact that a and b are chosen to be coprime.
(iii) It suffices to observe that $0+0+1=1+1+1=1 \neq 0$.
(iv) Note that we are asking if -1 is a square or not, in \mathbb{F}_{19}. As $(-a)^{2}=a^{2}$, it suffices to consider $0 \leq a \leq 9$.

$$
\begin{array}{cccc}
0^{2}=0, & 1^{2}=1, & 2^{2}=4, & 3^{2}=9,
\end{array} 4^{2}=16 .
$$

Thus $x^{2}+1$ does not have a root and so it must be irreducible.
(v) Again it suffices to check that 9 is not a cube root in \mathbb{F}_{13}. As $(-a)^{3}=-a^{3}$, it suffices to check that for $0 \leq a \leq 4, a^{3} \neq \pm 9=9,4$. We compute

$$
0^{3}=0, \quad 1^{3}=1, \quad 2^{3}=8, \quad 3^{3}=27=1 \quad 4^{3}=64=12
$$

(vi) We first check that $x^{4}+2 x^{2}+2$ does not have any linear factors. This is equivalent to checking that it does not have any roots, which is clear as

$$
a^{4}+2 a^{2}+2 \geq 2
$$

for any real number a.
The only other possbility to eliminate is that it is a product of quadratic factors. Suppose that

$$
x^{4}+2 x^{2}+2=f(x) g(x),
$$

where both f and g are quadratic. Moving the coefficient of x^{2} in f from f to g, we might as well assume that f is monic, that is, that its top coefficient is 1 . In this case g is monic as well. Thus

$$
x^{4}+2 x^{2}+2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

where a, b, c and d are rational numbers. Comparing coefficients of x^{3}, we get

$$
a+c=0 .
$$

Renaming, we get

$$
x^{4}+2 x^{2}+2=\left(x^{2}+a x+b\right)\left(x^{2}-a x+c\right) .
$$

Looking the coefficient of x, we get

$$
a c-a b=0 .
$$

Thus either $a=0$ or $b=c$. Suppose $a=0$. Replacing x^{2} by y, we get

$$
y^{2}+2 y+2=(y+a)(y+b)
$$

some a and b. In this case the polynomial $y^{2}+2 y+2$ would have a real root. But

$$
y^{2}+2 y+2=(y+1)^{2}+1
$$

so that if $a \in \mathbb{R}$, we have

$$
a^{2}+2 a+2=(a+1)^{2}+1 \geq 1>0
$$

The only remaining possibility is that $b=c$. In this case $b^{2}=2$, which is impossible, as b is a rational number.
3. We apply Euclid's algorithm. As the norm of $11+7 i$ is greater than $8-i$, we first try to divide $a=8-i$ into $b=11+7 i$. Let c be the quotient in \mathbb{C}. Now

$$
a \bar{a}=64+1=65 .
$$

Thus $a^{-1}=\frac{1}{65} \bar{a}$. Hence

$$
\begin{aligned}
c & =\frac{b}{a} \\
& =a^{-1} b \\
& =\frac{1}{65}(b \bar{a}) \\
& =\frac{1}{65}(b \bar{a}) \\
& =\frac{1}{65}(b \bar{a}) \\
& =\frac{1}{65}(81+67 i) .
\end{aligned}
$$

Clearly the closest gridpoint q to c is $1+i$. In this case

$$
\begin{aligned}
r & =b-q a \\
& =11+i-9-7 i \\
& =4-6 i .
\end{aligned}
$$

Thus

$$
11+7 i=(1+i)(8-i)+(4-6 i) .
$$

We continue with $4-6 i$ and $8-i$. Thus we now try to divide $4-6 i$ into $8-i$. Note that

$$
(8-i)-(4-6 i)=4+5 i
$$

It follows that we can take at the next step $q=1$ and $r=4+5 i$, as $4+5 i$ has smaller norm than $4-6 i$. Thus

$$
8-i=1(4-6 i)+4+5 i
$$

Now we try to divide $4+5 i$ into $4-6 i$. The inverse of $4+5 i$ is

$$
\frac{1}{41}(4-5 i)
$$

Thus we look for a gridpoint close to

$$
\frac{1}{41}(4-6 i)(4-5 i)=\frac{-1}{41}(14+44)
$$

Clearly we should take $-i$. In this case the remainder is

$$
4-6 i+i(4+5 i)=-1-2 i
$$

We have

$$
4-6 i=i(4+5 i)-(1+2 i)
$$

We continue with $1+2 i$ and $4+5 i$. In this case we can spot that $q=2$, so that

$$
r=i .
$$

As this is a unit, in fact the original numbers are coprime.
Aliter: Here is an entirely different way to proceed. Let $q=a+b i$ be a Gaussian prime. The norm of q is $a^{2}+b^{2}$. Moreover if q divides $c+d i$ then the norms must divide each other. Thus if $11+7 i$ and $8-i$ have any common factors, then their norms must have a common factor. The norm of the first number is $170=2 \cdot 5 \cdot 17$ and the norm of the second is $65=5 \cdot 13$. The only common factors are then 5 .
It follows that

$$
11+7 i=p_{1} p_{2} p_{3},
$$

where the norm of p_{1} is 2 , the norm of p_{2} is 5 and the norm of p_{3} is 17 . Similarly

$$
8-i=q_{1} q_{2},
$$

where the norm of q_{1} is 5 and the norm of q_{2} is 13 . Of course the p's and the q's are primes.
How does 5 factor in the Gaussian integers? Well

$$
5=1^{2}+2^{2}=(1+2 i)(1-2 i) .
$$

Moreover $1+2 i$ and $1-2 i$ are not associates. Thus, since the Gaussian integers are a UFD, the only possible common factors are $1 \pm 2 i$, and if one divides $8-i$ (or $11+7 i$) then the other does not (as 5 divides the norm, but not 5^{2}).
Now $8-i$ is divisible by $1-2 i$. Indeed

$$
8-i=(2+3 i)(1-2 i) .
$$

Thus $p_{2}=1-2 i$. On the other hand, $11+7 i$ is divisible by $1+2 i$. Indeed

$$
11+7 i=(5-3 i)(1+2 i) .
$$

Thus $q_{1}=1+2 i$. It follows that $11+7 i$ and $8-i$ are coprime.
4. Let

$$
\phi: \mathbb{R} \longrightarrow \mathbb{C}
$$

be the obvious inclusion. Applying the universal property of a polynomial ring, define a ring homomorphism

$$
\phi: \mathbb{R}[x] \longrightarrow \mathbb{C}
$$

by sending x to i. ϕ is obviously surjective as $\mathbb{R} \cup\{i\}$ generates \mathbb{C}. Let I be the kernel. This is an ideal in $\mathbb{R}[x]$. Therefore it must be principal. On the other hand $x^{2}+1$ is clearly in the kernel and $x^{2}+1$ is irreducible over \mathbb{R}, whence prime. It follows that $I=\left\langle x^{2}+1\right\rangle$, and that I is a prime ideal. By the Isomorphism Theorem, the result follows.
5. (i) To show that $x^{2}+1$ is irreducible, it suffices to check that -1 is not a square in F. We compute $a^{2}, 0 \leq a \leq 5$. We have

$$
0^{2}=0, \quad 1^{2}=1, \quad 2^{2}=4, \quad 3^{2}=9, \quad 4^{2}=16=5, \quad 5^{2}=25=3
$$

Thus $x^{2}+1$ is irreducible. As F is a field, $F[x]$ is a UFD. Thus $x^{2}+1$ is prime. Thus $I=\left\langle x^{2}+1\right\rangle$ is a prime ideal and so

$$
L=F[x] / I,
$$

is an integral domain.
I claim that every element of L is represented uniquely by a polynomial of the form $a x+b$, where a and b are in F.
First suppose that we have a coset $g+I$. By the division algorithm, we may write

$$
g=q f+r
$$

where the degree of r is at most one and $f=p$. Thus $r=a x+b$, for some a and b and moreover $g+I=r+I$.
On the other hand if $a x+b+I=c x+d+I$, then $(a-c) x+(b-d) \in I$. On the other hand, as I is generated by a polynomial of degree two, the only non-zero elements of I have degree at least two. Thus $(a-c) x+b-d=0$, so that $a=c$ and $b=d$. The claim follows.
In this case L has $121=11^{2}$ elements. As L is finite, it is in fact a field and we are done.
(ii) It suffices, repeating the argument above, to show that $x^{3}+x+4$ is irreducible. To prove this we show it does not have any roots. We compute

$$
\begin{array}{cc}
0^{3}+0+4=4 & 1^{3}+1+4=6 \\
2^{3}+2+4=3 & 3^{3}+3+4=1 \\
4^{3}+4+4=5 & 5^{3}+5+4=4 \\
6^{3}+6+4=-5^{3}-5+4=6 & 7^{3}+7+4=-4^{3}-4+4=2 \\
8^{3}+8+4=-3^{3}-3+4=4 & 9^{3}+9+4=-2^{3}-2+4=3 \\
10^{3}+10+4=-1^{3}-1+4=2 . &
\end{array}
$$

6. Suppose that $p_{1}, p_{2}, \ldots, p_{n}$ are irreducible polynomials. Then each p_{i} is not a constant polynomial, that is, its degree is at least one. Let

$$
f=p_{1} \cdot p_{2} \cdots \cdots p_{n}+1
$$

As $R=F[x]$ is a UFD it follows that f is a product of primes, $q_{1}, q_{2}, \ldots, q_{m}$. As $p_{1}, p_{2}, \ldots, p_{n}$ are irreducible they are prime. Now p_{i} divides the first term on the RHS but not the second, so that p_{i} does not divide f. Thus none of the primes $q_{1}, q_{2}, \ldots, q_{m}$ are equal to $p_{1}, p_{2}, \ldots, p_{n}$. Thus f is divisible by an irreducible polynomial, not equal to one of $p_{1}, p_{2}, \ldots, p_{n}$.

It follows that there are infinitely many irreducible polynomials. Let m be the cardinality of F. As there are m^{d+1} polynomials of degree at most d, so that there are only finitely many polynomials of degree at most d, there must be polynomials of arbitrarily large degree.
7. Let k be a field and let S be the infinite polynomial ring

$$
k\left[u, v, y, x_{1}, x_{2}, \ldots\right] .
$$

Let I be the ideal generated by $x_{1} y=u v$ and $x_{i}=x_{i+1}^{2}, i=1,2, \ldots$. Let R be the ring S / I.
Consider $a=u v \in R$. Then u and v are clearly irreducible elements of R. On the other hand $a=x_{1} y, x_{1}=x_{2}^{2}, x_{2}=x_{3}^{2}$ and so on, x_{1}, x_{2}, \ldots are not units, so that a is a product of irreducibles, whilst at the other time, one can run the factorisation algorithm, starting with a, so that it never terminates.
8. I am not sure how to do this without using some techniques from a little later in the course.

