MODEL ANSWERS TO HWK \#1

1. Suppose that a and b are elements of S. We have

$$
\begin{array}{rlrl}
a & =a * b \quad & \quad \text { by rule (1) } \\
& =b * a \quad \text { by rule (2) } \\
& =b \quad \text { by rule (1) }
\end{array}
$$

As a and b are arbitrary, S can have at most one element.
2. (a) Suppose that a and b are two integers and that $a * b=b * a$.

Now $a * b=a-b$ and $b * a=b-a$ so that then $a-b=b-a$. Applying the standard rules of arithmetic, we get $2 a=2 b$ and so $a=b$.
(b) Suppose that a, b and c are integers. Then

$$
a *(b * c)=a *(b-c)=a-(b-c)=a+c-b
$$

On the other hand

$$
(a * b) * c=(a-b) * c=(a-b)-c=a-(b+c) .
$$

Thus equality holds iff $a+c-b=a-(b+c)$, that is, cancelling $c=-c$ so that $c=0$. Thus $*$ is not associative. For example,

$$
0 *(0 * 1)=1
$$

but

$$
(0 * 0) * 1=-1
$$

(c) Let a be an integer. Then

$$
a * 0=a-0=a .
$$

(d) Let a be an integer. Then

$$
a * a=a-a=0 .
$$

3. Let R denote rotation through 90° degrees, clockwise. Then R^{2} denotes rotation through 180° and R^{3} rotation through 270°. Together with the identity these constitute all rotations. In addition there are four flips. Two side flips S_{1} and S_{2} and two diagonal flips D_{1} and D_{2}. If the vertices are A, B, C and D, in clockwise order, then we may suppose that S_{1} exchanges A and B, and C and D, S_{2} exchanges A and D, and B and C, F_{1} fixes A and C and exchanges B and D, whilst F_{2} fixes B and D and exchanges A and C.
These are the only symmetries. There are 24 permutations of the letters $\{A, B, C, D\}$ but not all permutations can be realised as a symmetry of a square. Wherever one sends A, the images of the vertices B and D
are still adjacent to the image of A whilst the image of C is not. There are four places to send A, to any of $\{A, B, C, D\}$, but once we have decided where to send A there are only two more choices, where to send B (we cannot send it the vertex opposite the image of A); D has to be sent to the other vertex adjacent to the image of A and the image of C is to the vertex opposite the image of A. So the eight symmetries we have written down are the only symmetries.
We obviously get a group. Associativity follows as multiplication of symmetries corresponds to composition of functions. The identity symmetry acts as the identity and given any symmetry there is always a symmetry which undoes that symmetry. The inverse of I is I, the inverse of R is R^{3}, the inverse of R^{2} is R^{2} and the inverse of a flip is the same flip.
Here is the Cayley table:

$*$	I	R	R^{2}	R^{3}	S_{1}	S_{2}	D_{1}	D_{2}
I	I	R	R^{2}	R^{3}	S_{1}	S_{2}	D_{1}	D_{2}
R	R	R^{2}	R^{3}	I	D_{2}	D_{1}	S_{1}	S_{2}
R^{2}	R^{2}	R^{3}	I	R	S_{2}	S_{1}	D_{2}	D_{1}
R^{3}	R^{3}	I	R	R^{2}	D_{1}	D_{2}	S_{2}	S_{1}
S_{1}	S_{1}	D_{1}	S_{2}	D_{2}	I	R^{2}	R	R^{3}
S_{2}	S_{2}	D_{2}	S_{1}	D_{1}	R^{2}	I	R^{3}	R
D_{1}	D_{1}	S_{2}	D_{2}	S_{1}	R^{3}	R	I	R^{2}
D_{2}	D_{2}	S_{1}	D_{1}	S_{2}	R	R^{3}	R^{2}	I

To get the table, we need to compute $R S_{1}=D_{2}$ the long way, use the obvious symmetry to conclude that $R S_{2}=D_{1}$, and then use the fact that every row and column is a permutation of

$$
\left\{I, R, R^{2}, R^{3}, S_{1}, S_{2}, D_{1}, D_{2}\right\}
$$

some easy manipulations and the fact that the inverse of a product is the product of the inverses in the reverse order, to fill in the rest.
4. Let

$$
H=\left\{\left.A=\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \in M_{3,3}(\mathbb{R}) \right\rvert\, x, y, z \in \mathbb{R}\right\}
$$

Note that if $A \in H$ then $\operatorname{det} A=1$. Therefore H is a subset of $\mathrm{GL}_{3}(\mathbb{R})$ the invertible 3×3 matrices with real entries, which is a group under multiplication. It suffices to check that H is non-empty, closed under multiplication and taking inverses.

Note that $I_{3} \in H$ so that H is certainly non-empty. If A and A^{\prime} are two elements of H,

$$
A=\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad A^{\prime}=\left(\begin{array}{ccc}
1 & x^{\prime} & y^{\prime} \\
0 & 1 & z^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
A A^{\prime}=\left(\begin{array}{ccc}
1 & x+x^{\prime} & y+y^{\prime}+x z^{\prime} \\
0 & 1 & z+z^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

which is an element of H. Therefore H is closed under multiplication. On the other hand the inverse of A is

$$
A^{-1}=\left(\begin{array}{ccc}
1 & -x & x z-y \\
0 & 1 & -z \\
0 & 0 & 1
\end{array}\right)
$$

which is also an element of H. Therefore H is closed under inverses. It follows that H is a group.
5. Suppose not, suppose that G is not abelian. We will derive a contradiction.
We may suppose that the elements of G are $\{e, a, b, c, d\}$. As G is not abelian, possibly renaming, we must have $a b \neq b a$. Possibly renaming, we must have $a b=c$ and $b a=d$. Now $b \notin C_{a}$. As $a a^{-1}=a^{-1} a=e$ it follows that $a^{-1} \in C_{a}$. As $b=a^{-1} c$ and $a^{-1} \in C_{a}$ and C_{a} is a subgroup, so that it is closed under multiplication, $c \notin C_{a}$. Similarly $d \notin C_{a}$. Thus $C_{a}=\{e, a\}$.
As $a^{-1} \in C_{a}$ and $a^{-1} \neq e$, we must have $a^{-1}=a$. As a only commutes with e and a, by the same argument, we must also have $b^{-1}=b$ and $c^{-1}=c$. But then

$$
\begin{aligned}
c & =c^{-1} \\
& =b^{-1} a^{-1} \\
& =b a \\
& =d,
\end{aligned}
$$

a contradiction. Therefore G is abelian.
6. As $y \in G$ there is an element $z \in G$ such that $z * y=e$. Multiplying both sides on the right by x we get

$$
\begin{aligned}
x & =e * x \quad \text { by rule }(2) \\
& =(z * y) * x \\
& =z *(y * x) \quad \text { by associativity } \\
& =z * e \quad \text { by rule }(3) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
x * e & =(z * e) * e \\
& =z *(e * e) \quad \text { by associativity } \\
& =z * e \quad \text { by rule }(2) \\
& =x .
\end{aligned}
$$

As x is arbitrary and $e * x=x=x * e$ it follows that e acts as the identity. But then

$$
\begin{aligned}
x & =z * e \\
& =z .
\end{aligned}
$$

As $y * x=e=x * y$ it follows that y is the inverse of $x . x$ is arbitrary every element has an inverse and so G is a group.
7. Consider the function

$$
\phi: G \longrightarrow G \quad \text { given by } \quad \phi(b)=a * b
$$

By assumption ϕ is injective. As G is finite it follows that ϕ is bijective. Similarly the function

$$
\psi: G \longrightarrow G \quad \text { given by } \quad \psi(b)=b * a
$$

is bijective. Given a, as ϕ is surjective we may find $e \in G$ such that

$$
\phi(e)=a \quad \text { so that } \quad a * e=a .
$$

Now suppose that $b \in G$. By a similar argument we may find $f \in G$ such that $f * b=b$. Now

$$
\begin{aligned}
(a * f) * b & =a *(f * b) \\
& =a * b .
\end{aligned}
$$

As

$$
(a * f) * b=a * b
$$

we have

$$
a * f=a,
$$

by rule (3). As

$$
a * f=a=a * e,
$$

we must have $e=f$ by rule (2). As a and b are arbitrary, it follows that $e * g=g * e$ for any $g \in G$. Thus e plays the role of the identity. As ψ is surjective we may find an element $b \in G$ such that $b * a=e$. At this point we are done by question 6 but here is a much easier argument:

$$
\begin{aligned}
(a * b) * a & =a *(b * a) \quad \text { by associativity } \\
& =a * e \\
& =a \\
& =e * a .
\end{aligned}
$$

As

$$
(a * b) * a=e * a,
$$

we must have $a * b=e$ by rule (3). Thus b is the inverse of a and G is a group.
8. Let $G=\mathbb{N}$ and let $*$ be ordinary addition. If a, b and c are three natural numbers such that

$$
a+b=a+c
$$

then adding the integer $-a$ to both sides we see that $b=c$. Similarly, if a, b and c are three natural numbers such that

$$
b+a=c+a,
$$

then adding the integer $-a$ to both sides we see that $b=c$. On the other hand, \mathbb{N} is not a group (it is a subset of \mathbb{N} which is not closed under taking inverses).
9. (a) Let f be the function $f(x)=\log x$ (we will adopt the convention that $\log -x=\log x)$. Then
$f(a * b)=f(a b)=\log (a b)=\log (a)+\log (b)=f(a)+f(b)=f(a) \# f(b)$,
by the usual rules for logs. Given $y>0$ let $x=10^{y}$. Then $\log x=y$, so that f is surjective.
(b) Let f be any such function. We check that $f(1)=f(-1)=0$. We have

$$
f(1)=f(1 \cdot 1)=f(1)+f(1) .
$$

Hence $f(1)=0$. On the other hand,

$$
0=f(1)=f(-1 \cdot-1)=f(-1)+f(-1),
$$

so that $f(-1)=0$ as well. But then f is not injective.
10. Since $a^{3}=e$ we have

$$
\begin{aligned}
b a & =a^{4} b \\
& =a^{3}(a b) \quad \text { by associativity } \\
& =e(a b) \\
& =a b .
\end{aligned}
$$

11. Let $G=\mathbb{Z}$ be the integers under addition. If $H \subset \mathbb{Z}$ is a nontrivial subgroup then H contains a non-zero integer n. But then H must contain

$$
2 n \quad 3 n \quad 4 n \ldots,
$$

all multiples of n, as H is closed under addition. But then H is infinite. As H is arbitrary, every non-trivial subgroup of G is infinite.

