MODEL ANSWERS TO HWK #1

1. Suppose that a and b are elements of S. We have

$$a = a * b \qquad \text{by rule (1)}$$
$$= b * a \qquad \text{by rule (2)}$$
$$= b \qquad \text{by rule (1).}$$

As a and b are arbitrary, S can have at most one element. 2. (a) Suppose that a and b are two integers and that a * b = b * a. Now a * b = a - b and b * a = b - a so that then a - b = b - a. Applying the standard rules of arithmetic, we get 2a = 2b and so a = b. (b) Suppose that a, b and c are integers. Then

$$a * (b * c) = a * (b - c) = a - (b - c) = a + c - b.$$

On the other hand

$$(a * b) * c = (a - b) * c = (a - b) - c = a - (b + c)$$

Thus equality holds iff a + c - b = a - (b + c), that is, cancelling c = -c so that c = 0. Thus * is not associative. For example,

$$0 * (0 * 1) = 1$$

but

$$(0 * 0) * 1 = -1.$$

(c) Let a be an integer. Then

$$a * 0 = a - 0 = a.$$

(d) Let a be an integer. Then

$$a \ast a = a - a = 0.$$

3. Let R denote rotation through 90° degrees, clockwise. Then R^2 denotes rotation through 180° and R^3 rotation through 270°. Together with the identity these constitute all rotations. In addition there are four flips. Two side flips S_1 and S_2 and two diagonal flips D_1 and D_2 . If the vertices are A, B, C and D, in clockwise order, then we may suppose that S_1 exchanges A and B, and C and D, S_2 exchanges A and D, and B and C, F_1 fixes A and C and exchanges B and D, whilst F_2 fixes B and D and exchanges A and C.

These are the only symmetries. There are 24 permutations of the letters $\{A, B, C, D\}$ but not all permutations can be realised as a symmetry of a square. Wherever one sends A, the images of the vertices B and D

are still adjacent to the image of A whilst the image of C is not. There are four places to send A, to any of $\{A, B, C, D\}$, but once we have decided where to send A there are only two more choices, where to send B (we cannot send it the vertex opposite the image of A); D has to be sent to the other vertex adjacent to the image of A and the image of C is to the vertex opposite the image of A. So the eight symmetries we have written down are the only symmetries.

We obviously get a group. Associativity follows as multiplication of symmetries corresponds to composition of functions. The identity symmetry acts as the identity and given any symmetry there is always a symmetry which undoes that symmetry. The inverse of I is I, the inverse of R is R^3 , the inverse of R^2 is R^2 and the inverse of a flip is the same flip.

Here is the Cayley table:

*	I	R	\mathbb{R}^2	R^3	S_1	S_2	D_1	D_2
Ι	Ι	R	\mathbb{R}^2	R^3	S_1	S_2	D_1	D_2
R	R	\mathbb{R}^2	\mathbb{R}^3	Ι	D_2	D_1	S_1	S_2
\mathbb{R}^2	R^2	R^3	Ι	R	S_2	S_1	D_2	D_1
R^3	R^3	Ι	R	\mathbb{R}^2	D_1	D_2	S_2	S_1
S_1	S_1	D_1	S_2	D_2	Ι	\mathbb{R}^2	R	R^3
S_2	S_2	D_2	S_1	D_1	\mathbb{R}^2	Ι	R^3	R
D_1	D_1	S_2	D_2	S_1	\mathbb{R}^3	R	Ι	\mathbb{R}^2
D_2	D_2	S_1	D_1	S_2	R	R^3	\mathbb{R}^2	Ι

To get the table, we need to compute $RS_1 = D_2$ the long way, use the obvious symmetry to conclude that $RS_2 = D_1$, and then use the fact that every row and column is a permutation of

$$\{I, R, R^2, R^3, S_1, S_2, D_1, D_2\}$$

some easy manipulations and the fact that the inverse of a product is the product of the inverses in the reverse order, to fill in the rest. 4. Let

$$H = \{ A = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \in M_{3,3}(\mathbb{R}) \, | \, x, y, z \in \mathbb{R} \, \}.$$

Note that if $A \in H$ then det A = 1. Therefore H is a subset of $GL_3(\mathbb{R})$ the invertible 3×3 matrices with real entries, which is a group under multiplication. It suffices to check that H is non-empty, closed under multiplication and taking inverses.

Note that $I_3 \in H$ so that H is certainly non-empty. If A and A' are two elements of H,

$$A = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad A' = \begin{pmatrix} 1 & x' & y' \\ 0 & 1 & z' \\ 0 & 0 & 1 \end{pmatrix}$$

then

$$AA' = \begin{pmatrix} 1 & x + x' & y + y' + xz' \\ 0 & 1 & z + z' \\ 0 & 0 & 1 \end{pmatrix}$$

which is an element of H. Therefore H is closed under multiplication. On the other hand the inverse of A is

$$A^{-1} = \begin{pmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix},$$

which is also an element of H. Therefore H is closed under inverses. It follows that H is a group.

5. Suppose not, suppose that G is not abelian. We will derive a contradiction.

We may suppose that the elements of G are $\{e, a, b, c, d\}$. As G is not abelian, possibly renaming, we must have $ab \neq ba$. Possibly renaming, we must have ab = c and ba = d. Now $b \notin C_a$. As $aa^{-1} = a^{-1}a = e$ it follows that $a^{-1} \in C_a$. As $b = a^{-1}c$ and $a^{-1} \in C_a$ and C_a is a subgroup, so that it is closed under multiplication, $c \notin C_a$. Similarly $d \notin C_a$. Thus $C_a = \{e, a\}$.

As $a^{-1} \in C_a$ and $a^{-1} \neq e$, we must have $a^{-1} = a$. As a only commutes with e and a, by the same argument, we must also have $b^{-1} = b$ and $c^{-1} = c$. But then

$$c = c^{-1}$$
$$= b^{-1}a^{-1}$$
$$= ba$$
$$= d,$$

a contradiction. Therefore G is abelian.

6. As $y \in G$ there is an element $z \in G$ such that z * y = e. Multiplying both sides on the right by x we get

$$x = e * x ext{by rule (2)}$$

= $(z * y) * x$
= $z * (y * x) ext{by associativity}$
= $z * e ext{by rule (3)}.$

It follows that

$$x * e = (z * e) * e$$

= $z * (e * e)$ by associativity
= $z * e$ by rule (2)
= x .

As x is arbitrary and e * x = x = x * e it follows that e acts as the identity. But then

$$\begin{aligned} x &= z * e \\ &= z. \end{aligned}$$

As y * x = e = x * y it follows that y is the inverse of x. x is arbitrary every element has an inverse and so G is a group.

7. Consider the function

$$\phi \colon G \longrightarrow G$$
 given by $\phi(b) = a * b$.

By assumption ϕ is injective. As G is finite it follows that ϕ is bijective. Similarly the function

$$\psi \colon G \longrightarrow G$$
 given by $\psi(b) = b * a$,

is bijective. Given a, as ϕ is surjective we may find $e \in G$ such that

$$\phi(e) = a$$
 so that $a * e = a$.

Now suppose that $b \in G$. By a similar argument we may find $f \in G$ such that f * b = b. Now

$$(a * f) * b = a * (f * b)$$
$$= a * b.$$

As

$$(a * f) * b = a * b$$

we have

$$a * f = a,$$

by rule (3). As

$$a * f = a = a * e,$$

we must have e = f by rule (2). As a and b are arbitrary, it follows that e * g = g * e for any $g \in G$. Thus e plays the role of the identity. As ψ is surjective we may find an element $b \in G$ such that b * a = e. At this point we are done by question 6 but here is a much easier argument:

$$(a * b) * a = a * (b * a)$$
 by associativity
= $a * e$
= a
= $e * a$.

As

$$(a \ast b) \ast a = e \ast a,$$

we must have a * b = e by rule (3). Thus b is the inverse of a and G is a group.

8. Let $G = \mathbb{N}$ and let * be ordinary addition. If a, b and c are three natural numbers such that

$$a+b=a+c$$

then adding the integer -a to both sides we see that b = c. Similarly, if a, b and c are three natural numbers such that

$$b + a = c + a,$$

then adding the integer -a to both sides we see that b = c. On the other hand, \mathbb{N} is not a group (it is a subset of \mathbb{N} which is not closed under taking inverses).

9. (a) Let f be the function $f(x) = \log x$ (we will adopt the convention that $\log -x = \log x$). Then

$$f(a*b) = f(ab) = \log(ab) = \log(a) + \log(b) = f(a) + f(b) = f(a) \# f(b),$$

by the usual rules for logs. Given y > 0 let $x = 10^y$. Then $\log x = y$, so that f is surjective.

(b) Let f be any such function. We check that f(1) = f(-1) = 0. We have

$$f(1) = f(1 \cdot 1) = f(1) + f(1).$$

Hence f(1) = 0. On the other hand,

$$0 = f(1) = f(-1 \cdot -1) = f(-1) + f(-1),$$

so that f(-1) = 0 as well. But then f is not injective.

10. Since $a^3 = e$ we have

$$ba = a^4 b$$

= $a^3(ab)$ by associativity
= $e(ab)$
= ab .

11. Let $G = \mathbb{Z}$ be the integers under addition. If $H \subset \mathbb{Z}$ is a non-trivial subgroup then H contains a non-zero integer n. But then H must contain

$$2n \quad 3n \quad 4n\ldots,$$

all multiples of n, as H is closed under addition. But then H is infinite. As H is arbitrary, every non-trivial subgroup of G is infinite.