
SECOND MIDTERM

MATH 18.703, MIT, SPRING 13

You have 80 minutes. This test is closed book, closed notes, no calculators.

There are 6 problems, and the total number of

points is 100. Show all your work. Please make

your work as clear and easy to follow as possible.

Points will be awarded on the basis of neatness,

the use of complete sentences and the correct pre-

sentation of a logical argument.

Name:

Signature:

Student ID #:

Problem Points Score

1 15

2 15

3 15

4 15

5 20

6 15

7 10

8 10

Presentation 5

Total 100
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1. (15pts) Give the definition of a ring.

Solution: A ring is a set R, together with two binary operations, known
as addition, denoted +, and multiplication, denoted ·, such that that
(R,+) is an abelian group, and multiplication is associative and there
is a unit for multiplication. Finally we require the distributive law,
that is given a, b and c ∈ R,

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

(ii) Give the definition of an integral domain.

Solution:

A ring R is an integral domain if multiplication is commutative and
there are no zero divisors, that is

ab = 0

implies that either a = 0 or b = 0.

(iii) Give the definition of a prime ideal.

Solution: A subset I of R is said to be a prime ideal if it is an additive
subgroup and for all a and b in R,

ab ∈ I

if and only if either a or b is in I.

1



2. (15pts) (i) State the Sylow Theorems.

Solution: Let G be a group of order of order n and let p be a prime
dividing n.
Then the number of Sylow p-subgroups is equal to one modulo p, di-
vides n and any two Sylow p-subgroups are conjugate.

(ii) Prove that if G is a group of order pq, where p and q are distinct
primes, then G is not simple.

Solution:

We may assume that p < q. Let nq be the number of Sylow q-
subgroups. Then nq = 1 or nq ≥ q + 1 and nq divides n. Therefore
nq divides p so that nq = 1. But then there is a unique subgroup Q of
order q and so Q is normal in G.
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3. (15pts) (i) Let R be a commutative ring and let a be an element of
R. Prove that the set

{ ra | r ∈ R }

is an ideal of R.

Solution: Suppose that b and c are in I. Then b = ra and c = sa, for
some r and s in R. In this case

b+ c = ra+ sa

= (r + s)a ∈ I.

Similarly −b = (−r)a ∈ I. Thus I is an additive subgroup as it is non-
empty and closed under addition and scalar multiplication. Finally
suppose that b ∈ I and that s ∈ R. Then sb = s(ra) = (rs)a. Thus I
is closed under multiplication by R and so I is an ideal.
(ii) Show that a commutative ring R is a field iff the only ideals in R
are the zero-ideal {0} and the whole ring R.

Solution:

Suppose that R is a field and let I be an ideal of R, not the zero ideal.
Pick a ∈ I, a 6= 0. As R is a field, a is a unit, that is, there is an
element b ∈ R such that ba = 1. But ba ∈ I, as a ∈ I. Thus 1 ∈ I.
Now pick any element r ∈ R. Then r = r · 1 ∈ I. Thus I = R.
Now suppose that the only ideals in R are the zero ideal and the whole
of R. Let a ∈ R be a non-zero element of R. Let I = 〈a〉. Then I is
an ideal of R. As a = 1 · a ∈ I, it follows that I is not the zero ideal.
By hypothesis it follows that I = R. But then 1 ∈ I and so 1 = ra, for
some r ∈ R. But then a is a unit. As a is arbitrary, R is a field.

(iii) Let φ : F −→ R be a ring homomorphism, where F is a field.
Prove that φ is injective.

Solution:

Let I = Kerφ. Then I is an ideal of R. φ(1) = 1 6= 0 so that I 6= R.
Thus I = {0}. Suppose that φ(a) = φ(a). Then φ(a− b) = 0, so that
b− c ∈ I = {0}. Hence b− c = 0 and so b = c. But then φ is injective.
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4. (15pts) (i) Let R be an integral domain. If ab = ac, for a 6= 0, b,
c ∈ R, then show that b = c.

Solution: We have
a(b− c) = ab− ac = 0.

As a 6= 0 and R is an integral domain, b− c = 0, so that b = c.

(ii) Show that every finite integral domain is a field.

Solution:

It suffices to prove that every non-zero element a of a finite integral
domain R has an inverse. Let

f : R −→ R

be the function f(x) = ax. Suppose that f(b) = f(c). Then ab = ac so
that a(b − c) = 0. As a 6= 0 and R is an integral domain b = c. Thus
f is injective. As R is finite, it follows that f is surjective. Thus there
is an element b ∈ R such that ba = f(b) = 1. But then a is a unit and
R is a field.
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5. (20pts) (i) Let R be a ring and let I be an ideal. Show that R/I is
a domain if and only if I is a prime ideal.

Solution:

Let a and b be two elements of R and suppose that ab ∈ I, whilst a /∈ I.
Let x = a+ I and y = b+ I. Then x 6= I = 0.

xy = (a+ I)(b+ I)

= ab+ I

= I = 0.

As R/I is a domain and x 6= 0, it follows that b+ I = y = 0. But then
b ∈ I. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R/I,
such that xy = 0, whilst x 6= 0. Then x = a + I and y = b + I, for
some a and b in R. As xy = I, it follows that ab ∈ I. As x 6= I, a /∈ I.
As I is a prime ideal, it follows that b ∈ I. But then y = b + I = 0.
Thus R/I is an integral domain.

(ii) Let p be a prime number. Show that the ring Zp = Z/pZ is a field.

Solution: Almost by definition pZ = 〈p〉 is a prime ideal. Thus Zp is
an integral domain. On the other hand this ring is certainly finite and
so it is a field.
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6. (15pts) (i) State the (first) Isomorphism Theorem.

Solution: Let
φ : R −→ S

be a surjective ring homomorphism, with kernel I. Then S is isomor-
phic to the quotient R/I.

(ii) Let X be a set and let R be a ring. Let F be the set of all functions
from X to R. Let x ∈ X be a point of X and let I be the ideal of all
functions in F vanishing at x. Prove that I is a prime ideal iff R is a
domain.

Solution:

Define a map
φ : F −→ R

by sending f ∈ F to its value at x, f(x) ∈ R. It is easy to check that φ
is a ring homomorphism. Given r ∈ R, let f be the constant function
with value r. Then φ(f) = r. Hence φ is surjective. Suppose that
φ(f) = 0. Then f(x) = 0, that is, f vanishes at x. Thus the kernel of
φ is I. By the Isomorphism Theorem F/I ≃ R. Thus I is prime iff R
is an integral domain.
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Bonus Challenge Problems

7. (10pts) Let m and n be coprime integers. Prove that

Zmn ≃ Zm ⊕ Zn.

Solution: Let I = 〈m〉 and J = 〈n〉. Consider the canonical maps

R −→ R/I and R −→ R/J.

These are ring homomorphisms. By the universal property of the direct
sum, the map

φ : Z −→ Zm ⊕ Zn,

defined by sending a ∈ Z to (a+I, b+J) is a ring homomorphism. The
kernel of φ is equal to I ∩ J . Clearly 〈mn〉 ⊂ I ∩ J . I claim that we
have equality. Suppose that a ∈ I ∩ J . Then a = bm and a = cn. As
m and n are coprime, there are integers r and s such that rm+sn = 1.
Thus

a = a · 1

= a(rm+ sn)

= ram+ san

= (rc)nm+ sbmn

= (rc+ sb)mn.

Thus a ∈ 〈mn〉 and the claim follows. By the Isomorphism Theorem,
there is an injective ring homomorphism

Zmn −→ Zm ⊕ Zn.

As both sides are of cardinality mn, this map must in fact be an iso-
morphism.
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8. (10pts) Construct a field with nine elements.

Solution:

Let R = Z[i] be the ring of Gaussian integers. Let M be the ideal of all
Gaussian integers of the form a + bi, where both a and b are divisible
by three. Then R/M is easily seen to have nine elements.
Indeed as a group, Z[i] is isomorphic to Z × Z. In fact define a map
by sending a+ bi to (a, b). Under this identification, M corresponds to
the subgroup 3Z× 3Z and the quotient is isomorphic to Z3 × Z3.
Thus it suffices to prove that R/M is a field, that is, 0that M is
maximal. Suppose not. Then there would be an ideal I, such that
M ⊂ I ⊂ Z[i], where both inclusions are strict. Pick a+ bi ∈ I not in
M .
Consider a2 + b2. As this is equal to (a − bi)(a + bi), a2 + b2 is an
integer belonging to I. On the other hand, 3 does not divide one of a
or b and as the only squares modulo three are 0 and 1, in fact a2+ b2 is
not divisible by 3. Thus I contains a number congruent to 1 modulo 3
(either a2 + b2 or its inverse). As M contains 3, then so does I and so
I contains 1. But then I = Z[i]. It follows that M is indeed maximal.
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