23. Group actions and automorphisms

Recall the definition of an action:

Definition 23.1. Let G be a group and let S be a set.

An action of G on S is a function

$$G \times S \longrightarrow S$$
 denoted by $(g, s) \longrightarrow g \cdot s$,

such that

$$e \cdot s = s$$
 and $(gh) \cdot s = g \cdot (h \cdot s)$

In fact, an action of G on a set S is equivalent to a group homomorphism (invariably called a **representation**)

$$\rho \colon G \longrightarrow A(S).$$

Given an action $G \times S \longrightarrow S$, define a group homomorphism

$$\rho \colon G \longrightarrow A(S)$$
 by the rule $\rho(g) = \sigma \colon S \longrightarrow S$,

where $\sigma(s) = g \cdot s$. Vice-versa, given a representation (that is, a group homomorphism)

$$\rho \colon G \longrightarrow A(S),$$

define an action

$$G \cdot S \longrightarrow S$$
 by the rule $g \cdot s = \rho(g)(s)$.

It is left as an exercise for the reader to check all of the details.

The only sensible way to understand any group is let it act on something.

Definition-Lemma 23.2. Suppose the group G acts on the set S. Define an equivalence relation \sim on S by the rule

$$s \sim t$$
 if and only if $g \cdot s = t$ for some $g \in G$.

The equivalence classes of this action are called orbits.

The action is said to be **transitive** if there is only one orbit (necessarily the whole of S).

Proof. Given $s \in S$ note that $e \cdot s = s$, so that $s \sim s$ and \sim is reflexive.

If s and $t \in S$ and $s \sim t$ then we may find $g \in G$ such that $t = g \cdot s$. But then $s = g^{-1} \cdot t$ so that $t \sim s$ and \sim is symmetric.

If r, s and $t \in S$ and $r \sim s, s \sim t$ then we may find g and $h \in G$ such that $s = g \cdot r$ and $t = h \cdot s$. In this case

$$t = h \cdot s = h \cdot (g \cdot r) = (hg) \cdot r,$$

so that $t \sim r$ and \sim is transitive.

Definition-Lemma 23.3. Suppose the group G acts on the set S. Given $s \in S$ the subset

$$H = \{ g \in G \mid g \cdot s = s \},\$$

is called the **stabiliser** of $s \in S$.

H is a subgroup of G.

Proof. H is non-empty as it contains the identity. Suppose that g and $h \in H$. Then

$$(qh) \cdot s = q \cdot (h \cdot s) = q \cdot s = s.$$

Thus $gh \in H$, H is closed under multiplication and so H is a subgroup of G.

Example 23.4. Let G be a group and let H be a subgroup. Let S be the set of all left cosets of H in G. Define an action of G on S,

$$G \times S \longrightarrow S$$

as follows. Given $gH \in S$ and $g' \in G$, set

$$g' \cdot (gH) = (g'g)H.$$

It is easy to check that this action is well-defined. Clearly there is only one orbit and the stabiliser of the trivial left coset H is H itself.

Lemma 23.5. Let G be a group acting transitively on a set S and let H be the stabiliser of a point $s \in S$. Let L be the set of left cosets of H in G. Then there is an isomorphism of actions (where isomorphism is defined in the obvious way) of G acting on S and G acting on L, as in (23.4). In particular

$$|S| = \frac{|G|}{|H|}.$$

Proof. Define a map

$$f: L \longrightarrow S$$

by sending the left coset gH to the element $g \cdot s$. We first have to check that f is well-defined. Suppose that gH = g'H. Then g' = gh, for some $h \in H$. But then

$$g' \cdot s = (gh) \cdot s$$
$$= g \cdot (h \cdot s)$$
$$= g \cdot s.$$

Thus f is indeed well-defined. f is clearly surjective as the action of G is transitive. Suppose that f(gH) = f(gH). Then gS = g's. In this case $h = g^{-1}g'$ stabilises s, so that $g^{-1}g' \in H$. But then g and g' are

in the same left coset and gH = g'H. Thus f is injective as well as surjective, and the result follows.

Given a group G and an element $g \in G$ recall the centraliser of g in G is

$$C_g = \{ h \in G \mid hg = gh \}.$$

The centre of G is then

$$Z(G) = \{ h \in H \mid gh = hg \},\$$

the set of elements which commute with everything; the centre is the intersection of the centralisers.

Lemma 23.6 (The class equation). Let G be a group.

The cardinality of the conjugacy class containing $g \in G$ is the index of the centraliser, $[G:C_g]$. Further

$$|G| = |Z(G)| + \sum_{[G:C_g]>1} [G:C_g],$$

where the second sum run over those conjugacy classes with more than one element.

Proof. Let G act on itself by conjugation. Then the orbits are the conjugacy classes. If $g \in$ then the stabiliser of g is nothing more than the centraliser. Thus the cardinality of the conjugacy class containing g is $[G:C_g]$ by (23.3).

If $g \in G$ is in the centre of G then the conjugacy class containing G has only one element, and vice-versa. As G is a disjoint union of its conjugacy classes, we get the second equation.

Lemma 23.7. If G is a p-group then the centre of G is a non-trivial subgroup of G. In particular G is simple if and only if the order of G is p.

Proof. Consider the class equation

$$|G| = |Z(G)| + \sum_{[G:C_q]>1} [G:C_g].$$

The first and last terms are divisible by p and so the order of the centre of G is divisible by p. In particular the centre is a non-trivial subgroup.

If G is not abelian then the centre is a proper normal subgroup and G is not simple. If G is abelian then G is simple if and only if its order is p.

Theorem 23.8. Let G be a finite group whose order is divisible by a prime p.

Then G contains at least one Sylow p-subgroup.

Proof. Suppose that $n = p^k m$, where m is coprime to p.

Let S be the set of subsets of G of cardinality p^k . Then the cardinality of S is given by a binomial

$$\binom{n}{p^k} = \frac{p^k m (p^k m - 1)(p^k m - 2) \dots (p^k m - p^k + 1)}{p^k (p^k - 1) \dots 1}$$

Note that for every term in the numerator that is divisible by a power of p, we can match this term in the denominator which is also divisible by the same power of p. In particular the cardinality of S is coprime to p.

Now let G act on S by left translation,

$$G \times S \longrightarrow S$$
 where $(g, P) \longrightarrow gP$.

Then S is breaks up into orbits. As the cardinality is coprime to p, it follows that there is an orbit whose cardinality is coprime to p. Suppose that X belongs to this orbit. Pick $g \in X$ and let $P = g^{-1}X$. Then P contains the identity. Let H be the stabiliser of P. Then $H \subset P$, since $h \cdot e \in P$. On the other hand, [G:H] is coprime to p, so that the order of H is divisible by p^k . It follows that H = P. But then P is a Sylow p-subgroup.

Question 23.9. What is the automorphism group of S_n ?

Definition-Lemma 23.10. Let G be a group.

If $a \in G$ then conjugation by G is an automorphism σ_a of G, called an **inner automorphism** of G. The group G' of all inner automorphisms is isomorphic to G/Z, where Z is the centre. G' is a normal subgroup of Aut(G) the group of all automorphisms and the quotient is called the **outer automorphism** group of G.

Proof. There is a natural map

$$\rho \colon G \longrightarrow \operatorname{Aut}(G),$$

whose image is G'. The kernel is isomorphic to the centre and so

$$G' \simeq G/Z$$
,

by the first Isomorphism theorem. It follows that $G' \subset \operatorname{Aut}(G)$ is a subgroup. Suppose that $\phi \colon G \longrightarrow G$ is any automorphism of G. I claim that

$$\phi \sigma_a \phi^{-1} = \sigma_{\phi(a)}.$$

Since both sides are functions from G to G it suffices to check they do the same thing to any element $g \in G$.

$$\phi \sigma_a \phi^{-1}(g) = \phi(a\phi^{-1}(g)a^{-1})$$
$$= \phi(a)g\phi(a)^{-1}$$
$$= \sigma_{\phi(a)}(g).$$

Thus G' is normal in Aut(G).

Lemma 23.11. The centre of S_n is trivial unless n=2.

Proof. Easy check. \Box

Theorem 23.12. The outer automorphism group of S_n is trivial unless n = 6 when it is isomorphic to \mathbb{Z}_2 .

Lemma 23.13. If $\phi: S_n \longrightarrow S_n$ is an automorphism of S_n which sends a transposition to a transposition then ϕ is an inner automorphism.

Proof. Since any automorphism permutes the conjugacy classes, ϕ sends transpositions to transpositions. Suppose that $\phi(1,2) = (i,j)$. Let a = (1,i)(2,j). Then $\sigma_a(i,j) = (1,2)$ and so $\sigma_a \phi$ fixes (1,2). It is obviously enough to show that $\sigma_a \phi$ is an inner automorphism. Replacing ϕ by $\sigma_a \phi$ we may assume ϕ fixes (1,2).

Now consider $\tau = \phi(2,3)$. By assumption τ is a transposition. Since (1,2) and (2,3) both move 2, τ must either move 1 or 2. Suppose it moves 1. Let a = (1,2). Then $\sigma_a \phi$ still fixes (1,2) and $\sigma_a \tau$ moves 2. Replacing ϕ by $\sigma_a \phi$ we may assume $\tau = (2,i)$, for some i. Let a = (3,i). Then $\sigma_a \phi$ fixes (1,2) and (2,3). Replacing ϕ by $\sigma_a \phi$ we may assume ϕ fixes (1,2) and (2,3).

Continuing in this way, we reduce to the case when ϕ fixes (1,2), (2,3), ..., and (n-1,n). As these transpositions generate S_n , ϕ is then the identity, which is an inner automorphism.

Lemma 23.14. Let $\sigma \in S_n$ be a permutation. If

- (1) σ has order 2,
- (2) σ is not a transposition, and
- (3) the conjugacy class generated by σ has cardinality

$$\binom{n}{2}$$
,

then n = 6 and σ is a product of three disjoint transpositions.

Proof. As σ has order two it must be a product of k disjoint transpositions. The number of these is

$$\frac{1}{k!} \binom{n}{2} \binom{n-2}{2} \dots \binom{n-2k+2}{2}.$$

For this to be equal to the number of transpositions we must have

$$\frac{1}{k!} \binom{n}{2} \binom{n-2}{2} \dots \binom{n-2k+2}{2} = \binom{n}{2},$$

that is

$$n! = 2^k (n - 2k)! k! \binom{n}{2}.$$

It is not hard to check that the only solution is k = 3 and n = 6. \square

Note that if there is an outer automorphism of S_6 , it must switch transpositions with products of three disjoint transpositions. So the outer automorphism group is no bigger than \mathbb{Z}_2 .

The final thing is to actually write down an outer automorphism. This is harder than it might first appear. Consider the complete graph K^5 on 5 vertices. There are six ways to colour the edges two colours, red and blue say, so that we get two 5-cycles. Call these colourings magic.

 S_5 acts on the vertices of K^5 and this induces an action on the six magic colourings. The induced representation is a group homomorphism

$$i: S_5 \longrightarrow S_6$$
,

which it is easy to see is injective. One can check that the transposition (1,2) is sent to a product of three disjoint transpositions. But then S_6 acts on the left cosets of $i(S_5)$ in S_6 , so that we get a representation

$$\phi: S_6 \longrightarrow S_6$$

which is an outer automorphism.