23. Group actions and automorphisms

Recall the definition of an action:

Definition 23.1. Let G be a group and let S be a set.

An **action** of G on S is a function

$$G \times S \to S$$

denoted by $(g, s) \mapsto g \cdot s$,

such that

$$e \cdot s = s \quad \text{and} \quad (gh) \cdot s = g \cdot (h \cdot s)$$

In fact, an action of G on a set S is equivalent to a group homomorphism (invariably called a **representation**)

$$\rho: G \to A(S).$$

Given an action $G \times S \to S$, define a group homomorphism

$$\rho: G \to A(S)$$

by the rule $\rho(g) = \sigma: S \to S$,

where $\sigma(s) = g \cdot s$. Vice-versa, given a representation (that is, a group homomorphism)

$$\rho: G \to A(S),$$

define an action

$$G \cdot S \to S$$

by the rule $g \cdot s = \rho(g)(s)$.

It is left as an exercise for the reader to check all of the details.

The only sensible way to understand any group is let it act on something.

Definition-Lemma 23.2. Suppose the group G acts on the set S. Define an equivalence relation \sim on S by the rule

$$s \sim t \quad \text{if and only if} \quad g \cdot s = t \quad \text{for some} \ g \in G.$$

The equivalence classes of this action are called **orbits**.

The action is said to be **transitive** if there is only one orbit (necessarily the whole of S).

Proof. Given $s \in S$ note that $e \cdot s = s$, so that $s \sim s$ and \sim is reflexive.

If s and $t \in S$ and $s \sim t$ then we may find $g \in G$ such that $t = g \cdot s$.

But then $s = g^{-1} \cdot t$ so that $t \sim s$ and \sim is symmetric.

If r, s and $t \in S$ and $r \sim s$, $s \sim t$ then we may find g and $h \in G$ such that $s = g \cdot r$ and $t = h \cdot s$. In this case

$$t = h \cdot s = h \cdot (g \cdot r) = (hg) \cdot r,$$

so that $t \sim r$ and \sim is transitive. \qed
Definition-Lemma 23.3. Suppose the group G acts on the set S. Given $s \in S$ the subset

$$H = \{ g \in G \mid g \cdot s = s \},$$

is called the stabiliser of $s \in S$.

H is a subgroup of G.

Proof. H is non-empty as it contains the identity. Suppose that g and $h \in H$. Then

$$(gh) \cdot s = g \cdot (h \cdot s) = g \cdot s = s.$$

Thus $gh \in H$, H is closed under multiplication and so H is a subgroup of G. □

Example 23.4. Let G be a group and let H be a subgroup. Let S be the set of all left cosets of H in G. Define an action of G on S,

$$G \times S \rightarrow S$$

as follows. Given $gH \in S$ and $g' \in G$, set

$$g' \cdot (gH) = (g'g)H.$$

It is easy to check that this action is well-defined. Clearly there is only one orbit and the stabiliser of the trivial left coset H is H itself.

Lemma 23.5. Let G be a group acting transitively on a set S and let H be the stabiliser of a point $s \in S$. Let L be the set of left cosets of H in G. Then there is an isomorphism of actions (where isomorphism is defined in the obvious way) of G acting on S and G acting on L, as in [23.4]. In particular

$$|S| = \frac{|G|}{|H|}.$$

Proof. Define a map

$$f : L \rightarrow S$$

by sending the left coset gH to the element $g \cdot s$. We first have to check that f is well-defined. Suppose that $gH = g'H$. Then $g' = gh$, for some $h \in H$. But then

$$g' \cdot s = (gh) \cdot s$$

$$= g \cdot (h \cdot s)$$

$$= g \cdot s.$$

Thus f is indeed well-defined. f is clearly surjective as the action of G is transitive. Suppose that $f(gH) = f(g'H)$. Then $gS = g'S$. In this case $h = g^{-1}g'$ stabilises s, so that $g^{-1}g' \in H$. But then g and g' are
in the same left coset and $gH = g'H$. Thus f is injective as well as surjective, and the result follows.

Given a group G and an element $g \in G$ recall the centraliser of g in G is
\[C_g = \{ h \in G \mid hg = gh \}. \]

The centre of G is then
\[Z(G) = \{ h \in H \mid gh = hg \}, \]
the set of elements which commute with everything; the centre is the intersection of the centralisers.

Lemma 23.6 (The class equation). Let G be a group.

The cardinality of the conjugacy class containing $g \in G$ is the index of the centraliser, $[G : C_g]$. Further
\[|G| = |Z(G)| + \sum_{[G:C_g]>1} [G : C_g], \]
where the second sum run over those conjugacy classes with more than one element.

Proof. Let G act on itself by conjugation. Then the orbits are the conjugacy classes. If $g \in G$ then the stabiliser of g is nothing more than the centraliser. Thus the cardinality of the conjugacy class containing g is $[G : C_g]$ by [23.3].

If $g \in G$ is in the centre of G then the conjugacy class containing G has only one element, and vice-versa. As G is a disjoint union of its conjugacy classes, we get the second equation.

Lemma 23.7. If G is a p-group then the centre of G is a non-trivial subgroup of G. In particular G is simple if and only if the order of G is p.

Proof. Consider the class equation
\[|G| = |Z(G)| + \sum_{[G:C_g]>1} [G : C_g]. \]

The first and last terms are divisible by p and so the order of the centre of G is divisible by p. In particular the centre is a non-trivial subgroup.

If G is not abelian then the centre is a proper normal subgroup and G is not simple. If G is abelian then G is simple if and only if its order is p.

Theorem 23.8. Let G be a finite group whose order is divisible by a prime p.

Then G contains at least one Sylow p-subgroup.
Proof. Suppose that \(n = p^km \), where \(m \) is coprime to \(p \).

Let \(S \) be the set of subsets of \(G \) of cardinality \(p^k \). Then the cardinality of \(S \) is given by a binomial

\[
\binom{n}{p^k} = \frac{p^km(p^km - 1)(p^km - 2) \ldots (p^km - p^k + 1)}{p^k(p^k - 1) \ldots 1}
\]

Note that for every term in the numerator that is divisible by a power of \(p \), we can match this term in the denominator which is also divisible by the same power of \(p \). In particular the cardinality of \(S \) is coprime to \(p \).

Now let \(G \) act on \(S \) by left translation,

\[G \times S \to S \quad \text{where} \quad (g,P) \to gP. \]

Then \(S \) is breaks up into orbits. As the cardinality is coprime to \(p \), it follows that there is an orbit whose cardinality is coprime to \(p \). Suppose that \(X \) belongs to this orbit. Pick \(g \in X \) and let \(P = g^{-1}X \). Then \(P \) contains the identity. Let \(H \) be the stabiliser of \(P \). Then \(H \subset P \), since \(h \cdot e \in P \). On the other hand, \([G:H]\) is coprime to \(p \), so that the order of \(H \) is divisible by \(p^k \). It follows that \(H = P \). But then \(P \) is a Sylow \(p \)-subgroup. \(\square \)

Question 23.9. What is the automorphism group of \(S_n \)?

Definition-Lemma 23.10. Let \(G \) be a group.

If \(a \in G \) then conjugation by \(G \) is an automorphism \(\sigma_a \) of \(G \), called an **inner automorphism** of \(G \). The group \(G' \) of all inner automorphisms is isomorphic to \(G/Z \), where \(Z \) is the centre. \(G' \) is a normal subgroup of \(\text{Aut}(G) \) the group of all automorphisms and the quotient is called the **outer automorphism** group of \(G \).

Proof. There is a natural map

\[\rho: G \to \text{Aut}(G), \]

whose image is \(G' \). The kernel is isomorphic to the centre and so

\[G' \simeq G/Z, \]

by the first Isomorphism theorem. It follows that \(G' \subset \text{Aut}(G) \) is a subgroup. Suppose that \(\phi: G \to G \) is any automorphism of \(G \). I claim that

\[\phi \sigma_a \phi^{-1} = \sigma_{\phi(a)}. \]
Since both sides are functions from G to G it suffices to check they do the same thing to any element $g \in G$.

$$\phi \sigma_a \phi^{-1}(g) = \phi(a \phi^{-1}(g) a^{-1})$$

$$= \phi(a) g \phi(a)^{-1}$$

$$= \sigma_{\phi(a)}(g).$$

Thus G' is normal in $\text{Aut}(G)$.

Lemma 23.11. The centre of S_n is trivial unless $n = 2$.

Proof. Easy check.

Theorem 23.12. The outer automorphism group of S_n is trivial unless $n = 6$ when it is isomorphic to \mathbb{Z}_2.

Lemma 23.13. If $\phi: S_n \to S_n$ is an automorphism of S_n which sends a transposition to a transposition then ϕ is an inner automorphism.

Proof. Since any automorphism permutes the conjugacy classes, ϕ sends transpositions to transpositions. Suppose that $\phi(1, 2) = (i, j)$. Let $a = (1, i)(2, j)$. Then $\sigma_a(i, j) = (1, 2)$ and so $\sigma_a \phi$ fixes $(1, 2)$. It is obviously enough to show that $\sigma_a \phi$ is an inner automorphism. Replacing ϕ by $\sigma_a \phi$ we may assume ϕ fixes $(1, 2)$.

Now consider $\tau = \phi(2, 3)$. By assumption τ is a transposition. Since $(1, 2)$ and $(2, 3)$ both move 2, τ must either move 1 or 2. Suppose it moves 1. Let $a = (1, 2)$. Then $\sigma_a \phi$ still fixes $(1, 2)$ and $\sigma_a \tau$ moves 2. Replacing ϕ by $\sigma_a \phi$ we may assume $\tau = (2, i)$, for some i. Let $a = (3, i)$. Then $\sigma_a \phi$ fixes $(1, 2)$ and $(2, 3)$. Replacing ϕ by $\sigma_a \phi$ we may assume ϕ fixes $(1, 2)$ and $(2, 3)$.

Continuing in this way, we reduce to the case when ϕ fixes $(1, 2)$, $(2, 3)$, \ldots, and $(n - 1, n)$. As these transpositions generate S_n, ϕ is then the identity, which is an inner automorphism.

Lemma 23.14. Let $\sigma \in S_n$ be a permutation. If

(1) σ has order 2,

(2) σ is not a transposition, and

(3) the conjugacy class generated by σ has cardinality

$$\binom{n}{2},$$

then $n = 6$ and σ is a product of three disjoint transpositions.

Proof. As σ has order two it must be a product of k disjoint transpositions. The number of these is

$$\frac{1}{k!} \binom{n}{2} \binom{n-2}{2} \cdots \binom{n-2k+2}{2}.$$
For this to be equal to the number of transpositions we must have
\[
\frac{1}{k!} \binom{n}{2} \binom{n-2}{2} \cdots \binom{n-2k+2}{2} = \binom{n}{2},
\]
that is
\[
n! = 2^k(n-2k)!k!(\frac{n}{2}).
\]
It is not hard to check that the only solution is \(k = 3\) and \(n = 6\). □

Note that if there is an outer automorphism of \(S_6\), it must switch transpositions with products of three disjoint transpositions. So the outer automorphism group is no bigger than \(\mathbb{Z}_2\).

The final thing is to actually write down an outer automorphism. This is harder than it might first appear. Consider the complete graph \(K^5\) on 5 vertices. There are six ways to colour the edges two colours, red and blue say, so that we get two 5-cycles. Call these colourings magic.

\(S_5\) acts on the vertices of \(K^5\) and this induces an action on the six magic colourings. The induced representation is a group homomorphism
\[
i : S_5 \longrightarrow S_6,
\]
which it is easy to see is injective. One can check that the transposition \((1, 2)\) is sent to a product of three disjoint transpositions. But then \(S_6\) acts on the left cosets of \(i(S_5)\) in \(S_6\), so that we get a representation
\[
\phi : S_6 \longrightarrow S_6,
\]
which is an outer automorphism.