
12. Presentations and Groups of small order

Definition-Lemma 12.1. Let A be a set. A word in A is a string of
elements of A and their inverses. We say that the word w′ is obtained
from w by a reduction, if we can get from w to w′ by repeatedly
applying the following rule,

• replace aa−1 (or a−1a) by the empty string.

Given any word w, the reduced word w′ associated to w is any
word obtained from w by reduction, such that w′ cannot be reduced any
further.

Given two words w1 and w2 of A, the concatenation of w1 and w2

is the word w = w1w2. The empty word is denoted e.
The set of all reduced words is denoted FA. With product defined

as the reduced concatenation, this set becomes a group, called the free
group with generators A.

It is interesting to look at examples. Suppose that A contains one
element a. An element of FA = Fa is a reduced word, using only a and
a−1. The word w = aaaa−1a−1aaa is a string using a and a−1. Given
any such word, we pass to the reduction w′ of w. This means cancelling
as much as we can, and replacing strings of a’s by the corresponding
power. Thus

w = aaa−1aaa

= aaaa

= a4 = w′,

where equality means up to reduction. Thus the free group on one
generator is isomorphic to Z.

The free group on two generators is much more complicated and it
is not abelian. A typical reduced word might be

a3b−2a5b13.

Clearly Fa,b has quite a few elements. Free groups have a very useful
universal property.

Lemma 12.2. Let F = FS be a free group with generators S. Let G
be any group. Suppose that we are given a function f : S −→ G.

Then there is a unique homomorphism

φ : F −→ G
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that extends f . In other words, the following diagram commutes

S
f - G

F.
?

∩

φ

-

Proof. Given a reduced word w in F , send this to the element given
by replacing every letter by its image in G. It is easy to see that this
is a homomorphism, as there are no relations between the elements of
F . �

In other words if S = {a, b} and you send a to g and b to h then
you have no choice but to send w = a2b−3a to g2h−3g, whatever that
element is in G.

This gives us a convenient way to present a group G. Pick generators
S of G. Then we get a homomorphism

φ : FS −→ G.

As S generates G, φ is surjective. Let the kernel be H. By the First
Isomorphism Theorem, G is isomorphic to FS/H. To describe H, we
need to write down generators R for H. These generators are called
relations, since they describe relations amongst the generators, such
that if we mod out by these relations, then we get G.

Definition 12.3. A presentation of a group G is a choice of gen-
erators S of G and a description of the relations R amongst these
generators.

It is probably easiest to give some examples.
Let G be a cyclic group of order n. Pick a generator a. Then we get

a homorphism

φ : Fa −→ G.

The kernel of φ is equal to H, which contains all elements of the form
am, where m is a multiple of n, H = 〈an〉. Thus a presentation for G
is given by the single generator a with the single relation an = e.

Take the group D4, the symmetries of the square. This has two
natural generators g and f , where g is rotation through π/2 and f is
reflection about a diagonal.

Thus we get a map

Fa,b −→ D4

given by sending a to g and b to f . What are the relations, that is,
what is the kernel? Well f 2 = e and g4 = e, so two obvious elements
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of the kernel are f 2 and g4. On the other hand

fgf−1 = g−1.

Using this relation, any word w can be manipulated into the form

f igj,

where i ∈ {0, 1} and j ∈ {0, 1, 2, 3}. Since this gives eight elements
of the quotient and there are eight elements of G, it follows that the
kernel is generated by

f 2, g4, fgf−1g.

The relations are

f 2 = e, g4 = e, fgf−1 = g−1.

Definition 12.4. Let S be a set. The free abelian group AS gen-
erated by S is the quotient of FS, the free group generated by S, and
the relations R given by the commutators of the elements of S.

Let S = {a, b}. Then Aa,b is isomorphic to Z× Z. Similarly for any
finite set.

Lemma 12.5. Let S be any set and let G be any abelian group. Given
any map f : S −→ G there is a unique homomorphism

AS −→ G.

Proof. As FS is a free group, there is a unique homomorphism

φ : FS −→ G.

As G is abelian the kernel of φ contains the commutator subgroup.
But then, as AS is by definition the quotient of FS by the commutator
subgroup, there is a unique map AS −→ G extending f . �

Lemma 12.6. Let G be any finitely generated abelian group.
Then G is a quotient of Z× Z× Z× · · · × Z.

Proof. Pick a finite set of generators S of G. By (12.5) there is a unique
homomorphism

AS −→ G.

As S generates G this map is surjective. On the other hand AS is
isomorphic to a direct sum of copies of Z. �

Theorem 12.7. Let G be a finitely generated abelian group.
Then G is isomorphic to Z × Z × · · · × Z × T , where T may be

presented uniquely as either,

(1) Zq1 × Zq2 × · · · × Zqr , where each qi is a power of a prime, or
(2) Zm1 × Zm2 × · · · × Zmr , where mi|mi+1.

3



Given this, we can classify all abelian groups of a fixed finite order.
For example, take n = 60 = 22 · 3 · 5. Then we have

Z2 × Z2 × Z3 × Z5 or Z4 × Z3 × Z5,

using the first representation, or

Z2 × Z30 or Z60

using the second representation.
Finally let me mention that in general if one is given generators and

relations, it can be very hard to describe the resulting quotient.

Theorem 12.8. There is no effective algorithm to solve any of the
following problems,

Given relations R, decide if

(1) two words w1 and w2 are equivalent, modulo the relations.
(2) a word w is equivalent, modulo the relations, to the identity.

Succintly, the method of representing groups by generators and re-
lations is an art not a science.

Let’s now try to classify all groups of order at most ten, up to iso-
morphism. To do this we recall some basic results. First note that for
every natural number n, there is at least one group of order n, namely
a cyclic group of order n.

Lemma 12.9. Let G be a group of order a prime p.
Then G is cyclic.

Proof. Pick any element g of G other than the identity and let H be
the subgroup generated by g. Then the order of H is greater than one
and divides the order of G, by Lagrange. As the order of G is a prime,
it follows that H = G so that G is cyclic, generated by any element
other than the identity. �

Look at the numbers from one to ten. Of these, 2, 3, 5 and 7 are
prime. Thus by (12.9) there is exactly one group of order 1, 2, 3, 5 and
7, up to isomorphism.

The numbers that are left are 4, 6, 8, 9 and 10. The next thing to
do is to start looking for intersting subgroups. The easiest way to find
a subgroup, is to pick an element and look at the cyclic subgroup that
it generates.

Lemma 12.10. Let G be a group in which every element has order
two.

Then G is abelian.
4



Proof. Suppose that a, b and ab all have order two. We will show that
a and b commute. By assumption

e = (ab)2

= abab.

As a and b are their own inverses, multiplying on the left by a and then
b, we get

ba = ab. �

On the other hand, the classification of finite abelian groups is easy.
There are two of order 4,

Z2 × Z2, Z4,

one of order six,
Z6,

three of order 8,

Z2 × Z2 × Z2, Z2 × Z4, Z8,

two of order nine,
Z3 × Z3, Z9,

and one of order ten
Z10.

Let us start with order four. Let g ∈ G be an element of G other than
the identity. Then the order of g is 2 or 4. If it is four then G is cyclic.
Otherwise g has order two. If G is not cyclic then, every element, other
than the identity, must have order two, and G is abelian, by (12.10).
Thus every group of order 4 is abelian.

Now suppose that G has order six. If G is abelian, then G is cyclic.
Otherwise, every element of G has order two or three. By (12.10) not
every element has order two. Let a be an element of order three. Let
H = 〈a〉.

Lemma 12.11. Let G be a group and let H be a subgroup of index
two.

Then H is normal in G.

Proof. It suffices to prove that the set of left cosets is equal to the set
of right cosets.

The left cosets, partition the elements of G into two parts. One
part is equal to H. By definition o a partition, the other part is the
complement of H. By the same token, the right cosets consist of H
and its complement.

Hence both partitions are equal and H is normal. �
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Pick b ∈ G, where b /∈ H. As H has index two, G/H has order two.
Thus b2 ∈ H. If b2 6= e, then b2 = a or b2 = a2 and b has order six,
a contradiction. Thus b2 = e and b has order two. Clearly G = 〈a, b〉.
Consider the conjugate of a by b,

bab−1.

As H is normal in G, bab−1 ∈ G, so that bab−1 = a or bab−1 = a2. If
the former then ab = ba and G is abelian. Otherwise G is isomorphic
to D3 as they both have the same presentation. Thus there are two
groups of order 6, a cyclic group and S3.

Now suppose that the order is ten. If G is not abelian, then every
element, other than the identity must have order 2 or 5. Not every
element has order two. Let a be an element of order five. Let H = 〈a〉.
Then H has index two. Thus H is normal in G. Let b ∈ G, b /∈ H. As
before b2 = e. Once again consider the conjugate of a by b,

bab−1

This is an element of H, of order five. Thus bab−1 = ai, some i 6= 0.
Suppose that i 6= 1, else G is abelian. If i = 4, then bab−1 = a−1 and
G is isomorphic to D5, the symmetries of a pentagon.

Suppose that bab−1 = a2. Then

a = b2ab−2

= b(bab−1)b−1

= ba2b−1

= (bab−1)(bab−1

= a2a2

= a4.

But then a4 = a and so a3 = e, a contradiction. Similarly bab−1 6= a3.
Thus a group of order ten is either cyclic or isomorphic to D5.

Now suppose that G is a non-abelian group of order eight. There
are no elements of order eight, as G is not cyclic and not every element
has order two, by (12.10).

Thus G has an element a of order 4. Let H = 〈a〉. Then H has
index two in G. Pick b ∈ G, with b /∈ H. Then b2 ∈ H. b2 6= a, a3,
otherwise b has order 8.

There are two possibilities. b2 = e. In this case, consider as before,
the conjugate of a by b. As before, we must have bab−1 = a3 and we
have the dihedral group D4. Call this group G1.
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Otherwise b2 = a2. Call this group G2. Again we consider the
conjugate of a by b. It must be a3 as before. Note that this rule
translates to ba = a3b. Let H = 〈a〉 and K = 〈b〉. Then G = 〈a, b〉 =
H ∨K = HK, where we use the rule

ba = a3b,

to prove that HK is closed under products and inverses, so that HK is
a subgroup of G. We will see later that there is indeed a group of order
eight with this presentation. Note that G1 and G2 are not isomorphic.
Indeed G1 has only two elements of order 4, a and a3, whilst G2 has at
least three, a, a3 and b.

Finally consider the case whereG has order nine. Then every element
of G, other than the identity must have order 3. Pick an element a 6= e
and let H = 〈a〉. Let S be the set of left cosets of H in G. Then S has
three elements. As in the proof of Cayley’s Theorem there is a group
homomorphism

φ : G −→ A(S) ' S3

We send g ∈ G to the permutation of S that sends aH to gaH. The
kernel of φ is a normal subgroup of G that is contained in H. The
image of φ has order at most six, and as G has order nine, the kernel
of φ cannot be the trivial subgroup. It follows that Kerφ = H so that
H is normal in G.

Pick b ∈ G−H. Then bH is an element of G/H and so it must have
order three. In particular b3 ∈ H. But then b3 = e, else b has order
nine. Let K = 〈b〉. By symmetry K is normal in G. As H ∩K = {e},
it follows that the elements of H and K commute. But G = 〈a, b〉.
Thus G is abelian, a contradiction.
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