
11. The Alternating Groups

Consider the group S3. Then this group contains a normal subgroup,
generated by a 3-cycle.

Now the elements of S3 come in three types. The identity, the prod-
uct of zero transpositions, the transpositions, the product of one trans-
position, and the three cycles, products of two transpositions. Then
the normal subgroup above, consists of all permutations that can be
represented as a product of an even number of transpositions.

In general there is no canonical way to represent a permutation as a
product of transpositions. But we might hope that the pattern above
continues to hold in every permutation group.

Definition 11.1. Let σ ∈ Sn be a permutation.
We say that σ is even if it can be represented as a product of an even

number of transpositions. We say that σ is odd if it can be represented
as a product of an odd number of transpositions.

The following result is much trickier to prove than it looks.

Lemma 11.2. Let σ ∈ Sn be a permutation.
Then σ is not both an even and an odd permutation.

There is no entirely satisfactory proof of (11.2). Here is perhaps the
simplest.

Definition 11.3. Let x1, x2, . . . , xn be indeterminates and set

f(x1, x2, . . . , xn) =
∏
i<j

(xi − xj).

For example, if n = 3, then

f(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).

Definition 11.4. Given a permutation σ ∈ Sn, let

g = σ∗(f) =
∏
i<j

(xσ(i) − xσ(j)).

Suppose that σ = (1, 2) ∈ S3. Then

g = σ∗(f) = (x2−x1)(x2−x3)(x1−x3) = −(x1−x2)(x1−x3)(x2−x3) = −f.
The following Lemma is the key part of the proof of (11.2).

Lemma 11.5. Let σ and τ be two permutations and let ρ = στ . Then

(1) σ∗(f) = ±f .
(2) ρ∗(f) = σ∗(τ ∗(f)).
(3) σ∗(f) = −f , whenever σ is a transposition.
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Proof. g is clearly a product of terms of the form xi − xj or xj − xi,
where i < j. Thus g = ±f . Hence (1).

σ∗(τ ∗(f)) = σ∗(
∏
i<j

(xτ(i) − xτ(j))

=
∏
i<j

(x(σ(τ(i)) − xσ(τ(j)))

=
∏
i<j

(xρ(i) − xρ(j))

= ρ∗(f).

Hence (2).
Suppose that σ = (a, b), where a < b. Then the only terms of f

affected by σ are the ones that involve either xa or xb. There are three
cases:

• i 6= a and j = b
• i = a and j 6= b
• i = a and j = b.

Suppose i 6= a and j = b. If i < a, then xi − xb is sent to xi − xa
and there is no change of sign. If a < i < b then xa − xi is sent to
xb − xi = −(xi − xb). Thus there is a change in sign. If i > b then
xa − xi is sent xb − xi and there is no change in sign.

Similarly if i = a and j 6= b. If j < a or j > b there is no change in
sign. If a < j < b there is a change in sign. But then the first two cases
contribute in total an even number of signs changes (in fact, there will
be exactly (a− b− 1) + (a− b− 1) = 2(a− b− 1) sign changes).

Finally we need to consider the case i = a and j = b. In this case
xa − xb gets replaced by xb − xa and there is a change in sign. Hence
(3). �

Proof. Suppose that σ is a product of an even number of transpositions.
Then by (2) and (3) of (11.5), σ∗(f) = f . Similarly if σ∗(f) is a product
of an odd number of transpositions, then σ∗(f) = −f . Thus σ cannot
be both even and odd. �

Definition-Lemma 11.6. There is a surjective homomorphism

φ : Sn −→ Z2

The kernel consists of the even transpositions, and is called the alter-
nating group An.

Proof. The map sends an even transposition to 1 and an odd transposi-
tion to −1. (2) of (11.5) implies that this map is a homomorphism. �
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Note that half of the elements of Sn are even, so that the alternating
group An contains n!

2
. One of the most important properties of the

alternating group is,

Theorem 11.7. Suppose that n 6= 4.
The only normal subgroup of Sn is An. Moreover An is simple, that

is, An has no proper normal subgroups.

If n = 4 then we have already seen that

{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
is a normal subgroup of S4. In fact it is also a normal subgroup of A4,
so that A4 is not simple.
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