HOMEWORK \#9, DUE THURSDAY APRIL 25TH

1. Herstein, Chapter 4, §4, 2: Let R be the Gaussian integers and let M be the subset of Gaussian integers $a+b i$ such that a and b are divisible by 3 . Show that M is an ideal and the quotient R / M is a field with 9 elements.
2. Herstein, Chapter 4, $\S 4$, 3: (i) Let

$$
R=\{a+b \sqrt{2} \mid a, b \text { integers }\} .
$$

Show that R is a subring of the complex numbers.
(ii) Let

$$
M=\{a+b \sqrt{2} \in R \mid a, b \text { are divisible by } 5\}
$$

Show that M is an ideal and the quotient R / M is a field with 25 elements. (Hint: consider the identity $a^{2}-2 b^{2}=(a+b \sqrt{2})(a-b \sqrt{2})$.) 3. Construct a field with 49 elements.
4. Let R be a ring and let I be an ideal of R, not equal to R. Suppose that every element not in I is a unit. Prove that I is the unique maximal ideal in R.
5. Let $\phi: R \longrightarrow S$ be a ring homomorphism and suppose that J is a prime ideal of S.
(i) Prove that $I=\phi^{-1}(J)$ is a prime ideal of R.
(ii) Give an example of an ideal J that is maximal such that I is not maximal.
6 . Let R be an integral domain and let a and b be two elements of R.
Prove that:
(i) $a \mid b$ if and only if $\langle b\rangle \subset\langle a\rangle$.
(ii) a and b are associates if and only if $\langle a\rangle=\langle b\rangle$.
(iii) Show that a is a unit if and only if $\langle a\rangle=R$.
7. Prove that every prime element of an integral domain is irreducible.
8. Let R be an integral domain. Let a and b be two elements of R. Show that if d and d^{\prime} are both a gcd for the pair a and b, then d and d^{\prime} are associates.
9. (i) Show that the elements 2,3 and $1 \pm \sqrt{-5}$ are irreducible elements of

$$
R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}
$$

(ii) Show that every element of R can be factored into irreducibles.
(iii) Show that R is not a UFD.
10. Let R be a UFD.
(i) Prove that for every pair of elements a and b of R, we may find an element $m=[a, b]$ that is a least common multiple, that is,
(1) $a \mid m$ and $b \mid m$, and
(2) if $a \mid m^{\prime}$ and $b \mid m^{\prime}$ then $m \mid m^{\prime}$.

Show that any two lcm's are associates.
(ii) Show that if (a, b) denotes the gcd then $(a, b)[a, b]$ is an associate of $a b$.
Challenge Problem: 11. Let S be a commutative semigroup, that is, a set together with a binary operation that is associative, commutative, and for which there is an identity, but not necessarily inverses. Treating this operation like multiplication in a ring, define what it means for S to have unique factorisation.
Challenge Problem: 12. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a sequence of elements of $\mathbb{Z}^{2}=\mathbb{Z} \oplus \mathbb{Z}$. Let S be the semigroup that consists of all linear combinations of $v_{1}, v_{2}, \ldots, v_{n}$, with non-negative integral coefficients. Let the binary rule be ordinary addition. Determine which semigroups have unique factorisation.

