18.703 HOMEWORK #3, DUE THURSDAY MARCH 7TH

Herstein, Chapter 3, §1, 1 & 5: Find the products and their orders:
 (i)

(ii)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \cdot \\
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} \cdot \\
(iii) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \end{pmatrix} \cdot \\
(iii)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}.$$

- 2. Herstein, Chapter 3, $\S2$, 1.
- 3. Herstein, Chapter 3, $\S2$, 2.
- 4. Herstein, Chapter 3, §2, 3 (a), (f).

5. Find the conjugate of $\sigma = (1, 4, 7, 2)(3, 6, 5) \in S_7$ by $\tau = (1, 2, 3)(4, 7, 5)$. What is the order of σ and τ ?

6. Find an element $\tau \in S_7$ that carries $\sigma = (1, 2, 5)(3, 6, 7, 4)$ into $\sigma' = (3, 1, 4)(2, 7, 6, 5)$, that is, find $\tau \in S_7$ such that

$$\sigma' = \tau \sigma \tau^{-1}.$$

7. Herstein, Chapter 3, §2, 17.