
PRACTICE FINAL B

MATH 18.02, MIT, AUTUMN 12

You have three hours. This test is closed book, closed notes, no calculators.

There are 16 problems, and the total number of

points is 240. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Recitation instructor:

Recitation Number+Time:

Problem Points Score

1 15

2 10

3 10

4 10

5 15

6 20

7 15

8 15

9 15

10 15

11 15

12 15

13 15

14 15

15 20

16 20

Total 240
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1. (15pts) (i) Let A = (1, 2, 3), B = (4,−1, 4) and C = (2, 4, 6). Find

the angle between
−→
AB and

−→
AC.

Solution:
−→
AB = 〈3,−3, 1〉 and −→

AC = 〈1, 2, 3〉. Then

cos θ =

−→
AB · −→AC
|−→AB||−→AC|

=
〈3,−3, 1〉 · 〈1, 2, 3〉
|〈3,−3, 1〉||〈1, 2, 3〉| = 0.

So
−→
AB and

−→
AC are orthogonal.

(ii) Let P = (0, 1, 1), Q = (2, 1, 0) and R = (1, 3, 2). Find the cross

product of
−→
PQ and

−→
PR.

Solution:
−→
PQ = 〈2, 0,−1〉 and −→

PR = 〈1, 2, 1〉.
∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
2 0 −1
1 2 1

∣

∣

∣

∣

∣

∣

= ı̂

∣

∣

∣

∣

0 −1
2 1

∣

∣

∣

∣

− ̂

∣

∣

∣

∣

2 −1
1 1

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

2 0
1 2

∣

∣

∣

∣

= 2ı̂− 3̂+ 4k̂.

(iii) Find the equation of the plane containing P , Q and R.

Solution:

This plane is orthogonal to ~n = 〈2,−3, 4〉 and contains the point P =
(0, 1, 1). So

〈x, y−1, z−1〉·〈2,−3, 4〉 = 0 so that 2x−3(y−1)+4(z−1) = 0.

Rearranging 2x− 3y + 4z = 1.
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2. (10pts) At what point does the line through (1, 0,−1) and (2, 1, 2)
intersect the plane x+ y − z = 3?

Solution: The line through these points is given parametrically by

~r(t) = 〈1, 0,−1〉+ t〈1, 1, 3〉 = 〈1 + t, t,−1 + 3t〉.
This meets the plane when

(1 + t) + t+ 1− 3t = 3 that is t = −1.

The point is then (0,−1,−4).

3. (10pts) Give parametric equations for the line given as the intersec-
tion of the two planes 2x− y − 4z = 0 and 5x− 2z = 1.

Solution:

We need to find two points on the line. Intersect with a third plane.
Try the plane given by x = 1. We get z = 2 and y = −6. So (1,−6, 2)
lies on the line. Now try the plane x = −1. We get z = −3 and y = 10.
So (−1, 10,−3) lies on the line.
The line is given as

~r(t) = 〈1,−6, 2〉+ t〈−2, 16,−5〉 = 〈1− 2t,−6 + 16t, 2− 5t〉.

2



4. (10pts) A moon M revolves around a planet P in a circular orbit
of radius one in the xy-plane, so that in one year it completes two
revolutions. Meanwhile the planet revolves around a star O in a circular
orbit of radius five, one revolution per year. The star is always at the
origin and at time t = 0 the planet and the moon are on the x-axis, the
planet to the right of the sun and the moon to the right of the planet.
Find the position of the moon as a function of the number of years t.

Solution: We are given that
−−→
PM = 〈cos 2t, sin 2t〉 and ~P = 〈5 cos t, 5 sin t〉.

So

~M = ~P+
−−→
PM = 〈cos 2t, sin 2t〉+〈5 cos t, 5 sin t〉 = 〈cos 2t+5 cos t, sin 2t+5 sin t〉.

So the position of the moon at time t is (cos 2t+5 cos t, sin 2t+5 sin t).
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5. (15pts) Let S be the surface defined by the equation

z = x2y + xy2 − 3y2.

(i) Find the tangent plane to S at the point P = (2, 1, 3).

Solution: Let
f(x, y) = x2y + xy2 − 3y2.

We have

fx = 2xy + y2 and fy = x2 + y2 − 6y.

The equation of the tangent plane is

(z − 3) = fx(x− 2) + fy(y − 1) = 5(x− 2) + 2(y − 1).

(ii) Give a formula approximating the change ∆z in z if x and y change
by small amounts ∆x and ∆y.

Solution:

∆z ≈ 5∆x+ 2∆y.

(iii) Approximate the value of z at the point (x, y) = (2.01, 1.01).

Solution:

z = f(2.01, 1.01) = f(2, 1) + ∆z ≈ 3 + 7(.01) = 3.07.
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6. (20pts) A rectangular box lies in the first quadrant. One vertex
is at the origin and the diagonally opposite vertex P is on the plane
2x+y+z = 2. We want the coordinates of the point P which maximises
the volume of the box.
(i) Show that this lead to maximising the function

f(x, y) = xy(2− 2x− y).

Find the critical points of f(x, y).

Solution: The volume is

xyz = xy(2− 2x− y) = 2xy − 2x2y − xy2.

To find the critical points, set the partials equal to zero:

fx = 2y−4xy−y2 = y(2−4x−y) = 0 and fy = 2x−2x2−2xy = 2x(1−x−y) = 0.

If xy 6= 0 then 4x+ y = 2 and x+ y = 1. The critical points are

(0, 0) (0, 2) (1, 0) and (1/3, 2/3).

(ii) Determine the type of the critical point in the first quadrant.

Solution: Use 2nd derivative test:

fxx = −4y fxy = 2− 4x− 2y and fyy = −2x.

So at (1/3, 2/3)

A = −8

3
B = −2

3
and C = −2

3
.

Hence AC − B2 > 0. As A < 0 we have a maximum.

(iii) Now solve this problem using the method of Lagrange multipliers.

Solution: We introduce a new variable λ and find x, y, z and λ such
that:

yz = 2λ

xz = λ

xy = λ

2x+ y + z = 2.

We are assuming x > 0, y > 0 and z > 0. Dividing the second equation
by the third we have y = z. Dividing the first equation by the second
we have y = 2x. Hence y + y + y = 2 and so y = 2/3, x = 1/3 and
z = 2/3. This is a maximum since

• it is the only critical point, and
• as we approach the boundary the volume tends to zero.

5



7. (15pts) Find the point on the surface

z2 = xy + x+ 1

closest to the origin, using the method of Lagrange multipliers.

Solution: We minimise the square of the distance to the origin:

minimise x2 + y2 + z2 subject to z2 − xy − x = 1.

To use the method of Lagrange multipliers, we introduce another vari-
able λ and find x, y, z and λ such that ∇f = λ∇g:

2x = −λ(y + 1)

2y = −λx

2z = λ2z

z2 − xy − x = 1.

Either z = 0 or λ = 1. Suppose z = 0. Then x(y + 1) = −1. If
we multiply the first equation by x we get 2x2 = λ. If we multiply
the second equation by y + 1 we get 2y(y + 1) = λ = 2x2 and so
y(y + 1) = x2. Multiply both sides by x to get y = −x3. Finally add
one to both sides and multiply by x to get x4 − x + 1 = 0. We check
that g(x) = x4 − x + 1 has no real roots. g′(x) = 4x3 − 1, so g has a
minimum where x3 = 1/4. But g(1/4) > 0 so g(x) has no real roots.
Therefore z = 0 is impossible.
If λ = 1 then 2y = −x and 2x = −y− 1. Hence 4x+ 2y = −2, so that
3x = −2, x = −2/3, y = 1/3, and z = 1/3.
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8. (15pts) Let w(x, y, z) = x4 + 2xy2 − z3.
(i) Find the equation of the tangent plane to the surface w = 2 at
(1, 1, 1).

Solution:

∇w = 〈4x3 + 2y2, 4xy,−3z2〉 so that (∇w)(1,1,1) = 〈6, 4,−3〉.
The tangent plane has normal vector ~n = 〈6, 4,−3〉 and contains
(1, 1, 1):

〈x−1, y−1, z−1〉·〈6, 4,−3〉 = 0 so that 6(x−1)+4(y−1)−3(z−1) = 0

Rearranging, we have 6x+ 4y − 3z = 7.

(ii) Assume that x, y and z are constrained by the equation w(x, y, z) =
2. Find the value of

(

∂x

∂z

)

y

at (1, 1, 1).

Solution: We use the method of differentials:

0 = dw = wx dx+ wy dy + wz dz = 6dx+ 4dy − 3 dz.

We solve for dx:

dx = −2

3
dy +

1

2
dz.

Therefore
(

∂x

∂z

)

y

=
1

2
.
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9. (15pts) Let R be the plane triangle with vertices (0, 0), (1,−1) and
(1, 1). Set up an iterated integral which gives the average distance of
a point from the origin,
(i) in rectangular coordinates

Solution: The area of R is 1. So the average distance is
¨

R

r dA =

ˆ 1

0

ˆ x

−x

√

x2 + y2 dy dx.

(ii) in polar coordinates.

Solution:
¨

R

r dA =

ˆ π/4

−π/4

ˆ sec θ

0

r2 dr dθ.
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10. (15pts) Let C1 be the line segment from (0, 0) to (1, 0), C2 the arc
of the unit circle running from (1, 0) to (0, 1) and let C3 be the line
segment (0, 1) to (0, 0). Let C be the simple closed curve formed by
C1, C2 and C3 and let

~F = x3ı̂+ x2ŷ.

Calculate
˛

C

~F · d~r,

(i) directly.

Solution:

Parametrise C1 by ~r(t) = 〈t, 0〉, 0 ≤ t ≤ 1, so that ~F = 〈t3, 0〉 and
d~r = 〈1, 0〉. Then

˛

C1

~F · d~r =
ˆ 1

0

t3 dt =

[

t4

4

]1

0

=
1

4
.

Parametrise C2 by ~r(t) = 〈cos t, sin t〉, so that ~F = 〈cos3 t, cos2 t sin t〉
and d~r = 〈− sin t, cos t〉. Then

˛

C2

~F · d~r =
ˆ 1

0

0 dt = 0.

Parametrise C2 by ~r(t) = 〈0, 1 − t〉, 0 ≤ t ≤ 1, so that ~F = 〈0, 0〉 and
d~r = 〈0,−1〉. Then

˛

C3

~F · d~r =
ˆ 1

0

0 dt = 0.

Therefore
˛

C

~F · d~r =
˛

C1

~F · d~r +
˛

C2

~F · d~r +
˛

C3

~F · d~r = 1

4
.

(ii) using Green’s theorem.

Solution: Let R be the region bounded by C. Note that curl ~F = 2xy.
˛

C

~F · d~r =
¨

R

curl ~F dA =

ˆ π/2

0

ˆ 1

0

2r3 cos θ sin θ dr dθ.

The inner integral is
ˆ 1

0

2r3 cos θ sin θ dr =

[

r4

2
cos θ sin θ

]1

0

=
1

2
cos θ sin θ.

The outer integral is
ˆ π/2

0

1

2
cos θ sin θ dθ =

[

1

4
sin2 θ

]π/2

0

=
1

4
.
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11. (15pts) (i) Calculate the flux of ~F = xı̂ out of each side, S1, S2, S3

and S4 of the square −1 ≤ x ≤ 1, and −1 ≤ y ≤ 1. Label the sides so
that S1 and S3 are horizontal, S1 below S3, and S2 and S4 are vertical,
S2 to the right of S4.

Solution:

As ~F represents motion parallel to the x-axis, the flux out of the two
horizontal sides, S1 and S3 is zero. Along S2, n̂ = ı̂ and ~F = ı̂, so that

ˆ

S2

~F · n̂ ds =

ˆ

S2

1 ds = 2,

since S2 has length 2. Along S4, n̂ = −ı̂ and ~F = −ı̂, so that
ˆ

S2

~F · n̂ ds =

ˆ

S2

1 ds = 2,

since S4 has length 2.

(ii) Explain why the total flux out of any square of sidelength 2 is the
same, regardless of its location or how its sides are tilted.

Solution:

Let C be the sum of the sides of the square and let S be the interior
of the square. Green’s theorem in normal form says

˛

C

~F · n̂ ds =

¨

S

div ~F dA.

But the divergence div ~F = 1 is constant and the integral on the right is
nothing but the area of S, which is always 4, regardless of the position
of the square.
On the other hand, the integral on the left is the total flux.
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12. (15pts) Find the area of the region R bounded by the curves xy = 2,
xy = 5, y = x2 and y = 4x2.

Solution: Let u = xy and v = y/x2. Then

J =
∂(u, v)

∂(x, y)
=

∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

=

∣

∣

∣

∣

y x
−2 y

x3

1
x2

∣

∣

∣

∣

=
3y

x2
= 3v.

As J > 0 over R we have

du du = 3vdx dy.

So the area of R is
¨

R

1 dA =

¨

R

1 dx dy =

ˆ 4

1

ˆ 5

2

1

3v
du dv.

The inner integral is
ˆ 5

2

1

3v
du =

[

u

3v

]5

2

=
1

v
.

The outer integral is
ˆ 4

1

1

v
dv =

[

ln v

]4

1

= ln 4.
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13. (15pts) Let

~F = (y − z)̂ı+ (x+ y)̂+ (1− x)k̂

(i) Find a potential function f for ~F .

Solution: We solve the three pdes

fx = y − z fy = x+ y and fz = 1− x.

If we integrate the first pde with respect to x we get

f(x, y, z) = yx− zx+ g(y, z),

where g(y, z) is an arbitrary function of y and z. Plugging this into the
second pde we get

x+ gy = x+ y so that gy = y.

Integrating this equation with respect to y we get

g(y, z) =
y2

2
+ h(z),

where h(z) is an arbitrary function of z. So f(x, y, z) = yx − zx +
y2/2 + h(z). Plugging this into the third pde we get

−x+ hz = 1− x so that hz = 1.

Therefore h(z) = z + c and

f(x, y, z) = yx− zx+
y2

2
+ z

is a potential function.

(ii) Let C be the parametric curve

x = 3 cos3 t y = 3 sin3 t z = t for 0 ≤ t ≤ 2π.

Find
ˆ

C

~F · d~r.

Solution: By the fundamental theorem of calculus
ˆ

C

~F ·d~r =
ˆ

C

∇f ·d~r = f(3, 0, 2π)−f(3, 0, 0) = −6π+2π−−6π = 2π.
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14. (15pts) Let D be the portion of the solid sphere

x2 + y2 + z2 < 1,

lying above the plane

z =

√
2

2
.

The surface bounding D consists of two parts, a curved part S and flat
part T . Orient both surfaces so that the normal vector points upwards.
Let

~F = xı̂+ ŷ+ zk̂.

(i) Calculate the flux of ~F across S.

Solution: We use spherical coordinates:

d~S = 〈x, y, z〉 sinφ dφ dθ.
So the flux of ~F across S is

¨

S

~F · d~S =

ˆ 2π

0

ˆ π/4

0

(x2 + y2 + z2) sinφ dφ dθ.

As x2 + y2 + z2 = 1 on S, the inner integral is
ˆ π/4

0

sinφ dφ =

[

− cosφ

]π/4

0

= 1− 1√
2
.

The outer integral is
ˆ 2π

0

(

1−
√
2

2

)

dθ = 2π −
√
2π.

(ii) Calculate the flux of ~F across T .

Solution: We project T down to the xy-plane. We get a circle of radius
1/
√
2 centred at the origin. We have

d~S = k̂ dA.

So the flux of ~F across T is
¨

T

~F · d~S =

¨

R

√
2

2
dA =

√
2π

4
,

as the area of R is π/2.

(iii) Find the volume of D using the divergence theorem.

Solution: As div ~F = 3, the divergence theorem says
‹

S

~F ·d~S−
‹

T

~F ·d~S =

‹

S−T

~F ·d~S =

˚

D

div ~F dV =

˚

D

3 dV = 3V,
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where V is the volume of D. So the volume of D is
π

12

(

8− 5
√
2
)

.
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15. (20pts) Calculate the flux of

~F = xı̂+ ŷ+ (1− 2z)k̂

out of the solid bounded by the xy-plane and the paraboloid z = 4 −
x2 − y2.
(i) directly,

Solution: The paraboloid is the graph of the function f(x, y) = 4 −
x2 − y2 over the disk R of radius 2 in the xy-plane.

d~S = 〈−fx,−fy, 1〉 dx dy = 〈2x, 2y, 1〉 dx dy
The flux of ~F out of the curved part of the paraboloid S1 is
¨

S1

~F ·d~S =

¨

R

2x2+2y2+1−8+2x2+2y2 dx dy =

ˆ 2π

0

ˆ 2

0

4r3−7r dr dθ.

The inner integral is
ˆ 2

0

4r3 − 7r dr =

[

r4 − 7

2
r2
]2

0

= 16− 14 = 2.

So the flux across S1 is 4π. For the flat bit S2 = R, n̂ = −k̂ and
~F · n̂ = 1. So the integral is −4π. The total flux is zero.

(ii) using the divergence theorem.

Solution:

div ~F = 1 + 1− 2 = 0. So by the divergence theorem we have
˛

S

~F · d~S =

˚

D

div ~F dV = 0.
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16. (20pts) Let ~F = −yı̂+x̂ and let S be the surface of the hemisphere

x2 + y2 + (z − 1)2 = 1 and z ≥ 1,

oriented updwards.
(i) Calculate the flux of ~F across S.

Solution: S is defined implicitly by a single function, g(x, y, z) = x2 +
y2 + (z − 1)2 = 1.

~N = ∇g = 〈2x, 2y, 2(z − 1)〉 and ~N · k̂ = 2(z − 1).

If we project onto the xy-plane, we get

d~S =
~N

~N · k̂
dx dy =

1

(z − 1)
〈x, y, z − 1〉 dx dy.

Therefore
¨

S

~F · d~S =

¨

S

0 dx dy = 0.

(ii) Find the curl of ~F .

Solution:
∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣

∣

∣

∣

∣

∣

= 2k̂.

(iii) Calculate the flux of curl ~F across S using Stokes’ theorem.

Solution: Let C be the unit circle in the plane z = 1 centred at (0, 0, 1).
¨

S

~F · d~S =

˛

C

curl ~F · d~r = 0,

as the work done going around C is zero, as curl ~F is vertical.
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