THIRD PRACTICE MIDTERM B MATH 18.02, MIT, AUTUMN 12

You have 50 minutes. This test is closed book, closed notes, no calculators.

There are 6 problems, and the total number of points is 100. Show all your work. *Please make* your work as clear and easy to follow as possible.

_

Name:			
Signature:	Problem	Points	Score
Student ID #:	1	15	
Recitation instructor:	2	15	
	3	10	
Recitation Number+Time:	4	20	
	5	20	

6

Total

20

100

- 1. (15pts) Let (\bar{x}, \bar{y}) be the centre of mass of the triangle with vertices
- at (-2,0), (0,1) and (2,0) (assume uniform density $\delta = 1$).
- (i) Express \bar{y} in terms of an integral.

(ii) Find \bar{x} .

2. (15pts) Find the moment of inertia about the origin of the half disk $x^2 + y^2 < a^2$, x > 0, where the density $\delta = x^2$.

3. (10pts) For which value of a is the vector field

$$\vec{F} = \left(axy - \frac{1}{x}\right)\hat{\imath} + \left(x^2 - \frac{1}{y}\right)\hat{\jmath}$$

a gradient vector field?

4. (20pts) Let \$\vec{F}\$ = 2y\$\u00e0\$ - x\$\u00e0\$. Let \$C\$ be the curve \$y = x^2\$ starting at (0,0) and ending at (1,1).
(a) Compute the work done on a particle that moves along \$C\$.

(b) Compute the flux of \vec{F} across C.

5. (20pts) (i) Express the work done by the force field

$$\vec{F} = (5x + 3y)\hat{\imath} + (1 + \cos y)\hat{\jmath}$$

on a particle going counterclockwise once around the unit circle centred at the origin in the form $\begin{subarray}{c} \begin{subarray}{c} \end{subarray} \end{subarray}$

$$\int_{a}^{b} f(t) \, \mathrm{d}t.$$

(ii) Evaluate the work done by using Green's theorem.

6. (20pts) Consider the region R enclosed by the x-axis, x = 1 and $y = x^3$. Let $\vec{F} = (1 + y^2)\hat{j}$.

(i) Use the normal form of Green's theorem to find the flux of \vec{F} out of R.

(ii) Find the flux across the horizontal side C_1 of R and the vertical side C_2 of R.

(iii) Find the flux across the third side C_3 .