THIRD PRACTICE MIDTERM A MATH 18.02, MIT, AUTUMN 12

You have 50 minutes. This test is closed book, closed notes, no calculators.

There are 6 problems, and the total number of points is 100. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:			
Signature	Problem	Points	Score
Student ID #:	1	15	
Desitation instructor:	2	10	
De itation Instructor.	3	20	
Recitation Number+Time:	4	20	
	5	20	

6

Total

15

100

1. (15pts) Evaluate

$$\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{1-y} \,\mathrm{d}y \,\mathrm{d}x.$$

2. (10pts) Find the x-coordinate \bar{x} of the centre of mass of the portion of the unit disk in the first quadrant, bounded by the x-axis and the line y = x (assume the density $\delta = 1$).

3. (20pts) (i) Find a such that

$$\vec{F} = (x^2 - 14xy)\hat{\imath} + (ax^2 - 2y)\hat{\jmath}.$$

is conservative.

(ii) Find a potential function f(x, y) for \vec{F} for this value of a.

(iii) Calculate the line integral

$$\int \vec{F} \cdot \mathrm{d}\vec{r},$$

for the curve C given by $x = 3 \sin t$, $y = \cos t$, $0 \le t \le \pi$, where C has the orientation which starts at (0, 1).

4. (20pts) Consider the region in the xy-plane bounded by the curves $y = x^2$, $y = x^2/3$, xy = 3 and xy = 5. (i) Compute du dv in terms of dx dy, where $u = x^2/y$ and v = xy.

(ii) Find a double integral for the area of R in uv-coordinates and evaluate it.

5. (20pts) Let C be the positively oriented closed curve formed by the parabola $y = x^2$ running from (-1, 1) to (1, 1) and by a horizontal line segment running from (1, 1) back to (-1, 1). Evaluate

$$\oint_C y^2 \,\mathrm{d}x + 4xy \,\mathrm{d}y,$$

(i) directly, and

(ii) by using Green's theorem.

6. (15pts) Find the volume of the region enclosed by the plane z = 4 and the surface $(2 - z)^2 + (z + z)^2$

$$z = (2x - y)^{2} + (x + y - 1)^{2}.$$