34. Review II

It is probably helpful to take stock of the various integrals and differentials we have encountered in this course:

Dimension	Standard	Vector
1	$\mathrm{~d} t, \mathrm{~d} s$	$\mathrm{~d} \vec{r}$
2	$\mathrm{~d} A$	$\mathrm{~d} \vec{S}$
3	$\mathrm{~d} V$	Not covered

In dimension one the most basic integral is the line integral:

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C} M \mathrm{~d} x+N \mathrm{~d} y
$$

This integral represents the work done to move a particle along C in a vector field \vec{F}. To compute directly, parametrise C. If we use the parameter t, we will get down to a standard one dimensional integral. For example, suppose that

$$
\vec{F}=x \hat{\imath}+y \hat{\jmath}
$$

and C is the unit circle, oriented counterclockwise. Paremetrise C in the standard way:

$$
\vec{r}(t)=\langle\cos t, \sin t\rangle \quad \text { where } \quad 0 \leq t \leq 2 \pi .
$$

Then

$$
\mathrm{d} \vec{r}=\langle-\sin t, \cos t\rangle \mathrm{d} t \quad \text { and } \quad\langle\cos t, \sin t\rangle .
$$

Therefore

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{2 \pi} 0 \mathrm{~d} t=0
$$

One can also use Green's theorem. C bounds the unit disk R :

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\iint_{R} \operatorname{curl} \vec{F} \mathrm{~d} A=\int_{0}^{2 \pi} \int_{0}^{1}(0-0) r \mathrm{~d} r \mathrm{~d} \theta=0
$$

as expected.
A closely related line integral is the flux of \vec{F} across C. We measure the flux from left to right. The flux across C is

$$
\int_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s
$$

To compute this, use the fact that \hat{n} is the unit tangent vector turned through $\pi / 2$ radians clockwise, so

$$
\hat{n} \mathrm{~d} s=\underset{1}{\langle\mathrm{~d} y,-\mathrm{d} x\rangle} .
$$

We have

$$
\int_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\int_{C} M \mathrm{~d} y-N \mathrm{~d} x
$$

In the example above

$$
\int_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\int_{0}^{2 \pi} \cos ^{2} t+\sin ^{2} t \mathrm{~d} t=2 \pi
$$

One can also use Green's theorem in normal form

$$
\int_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\iint_{R} \operatorname{div} \vec{F} \mathrm{~d} A=\iint_{R} 2 \mathrm{~d} A=2 \pi .
$$

$\mathrm{d} A$ is the area element in the $x y$-plane. We have

$$
\mathrm{d} A=\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta
$$

Example 34.1. What is the area of the ellipse

$$
(2 x+y)^{2}+(x-y)^{2} \leq 5 ?
$$

Use change of variables, $u=2 x+y$ and $v=x-y$. The Jacobian is

$$
J=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right|=-3 .
$$

So

$$
\mathrm{d} u \mathrm{~d} v=3 \mathrm{~d} x \mathrm{~d} y
$$

So the area of R is

$$
\iint_{R} 1 \mathrm{~d} A=\iint_{(2 x+y)^{2}+(x-y)^{2} \leq 5} 1 \mathrm{~d} x \mathrm{~d} y=\iint_{u^{2}+v^{2} \leq 5} \frac{1}{3} \mathrm{~d} u \mathrm{~d} v=\frac{5}{3} \pi .
$$

Example 34.2. Calculate

$$
\int_{0}^{1} \int_{y^{3}}^{1} \frac{6 y^{2}}{x^{2}+2} \mathrm{~d} x \mathrm{~d} y
$$

We swap the order of integration. The region R of integration is

$$
0 \leq y \leq 1 \quad \text { and } \quad y^{3} \leq x \leq 1
$$

Therefore

$$
\int_{0}^{1} \int_{y^{3}}^{1} \frac{6 y^{2}}{x^{2}+2} \mathrm{~d} x \mathrm{~d} y=\iint_{R} \frac{6 y^{2}}{x^{2}+2} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{x^{1 / 3}} \frac{6 y^{2}}{x^{2}+2} \mathrm{~d} y \mathrm{~d} x
$$

The inner integral is

$$
\int_{0}^{x^{1 / 3}} \frac{6 y^{2}}{x^{2}+2} \mathrm{~d} y=\left[\frac{2 y^{3}}{x^{2}+2}\right]_{0}^{x^{1 / 3}}=\frac{2 x}{2+x^{2}}
$$

The outer integral is

$$
\int_{0}^{1} \frac{2 x}{x^{2}+2} \mathrm{~d} x=\left[\ln \left(x^{2}+2\right)\right]_{0}^{1}=\ln 3 / 2 .
$$

In three dimensions, the volume form is

$$
\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=r \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z=\rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

The trickiest thing is to calculate surface integrals in space. The area form on a surface is
$\mathrm{d} S$.
It plays the same role as the area form $\mathrm{d} A$ in the plane. More common is

$$
\mathrm{d} \vec{S}=\hat{n} \mathrm{~d} S
$$

which is used to calculate flux out of S :

$$
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}
$$

Note that we need to choose an orientation of S. There are many ways to calculate the flux. If we parameterise $S, \vec{r}(u, v)$ using two parameters u and v we have

$$
\mathrm{d} \vec{S}=\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \mathrm{~d} u \mathrm{~d} v
$$

If S is given by a single constraint $g(x, y, z)=c$, a constant, then

$$
\mathrm{d} \vec{S}=\frac{\vec{N}}{\vec{N} \cdot \hat{k}} \mathrm{~d} x \mathrm{~d} y \quad \text { and } \quad \mathrm{d} \vec{S}=\frac{\vec{N}}{|\vec{N} \cdot \hat{k}|} \mathrm{d} x \mathrm{~d} y
$$

where $\vec{N}=\nabla g$ and the first form always picks the upwards orientation whilst the second form preserves the orientation. If S is given as the graph of a function $z=f(x, y)$ over a region R in the $x y$-plane, we have

$$
\mathrm{d} \vec{S}=\left\langle-f_{x},-f_{y}, 1\right\rangle \mathrm{d} x \mathrm{~d} y
$$

Formulas for spheres centred at the origin and cylinders with central axis the z-axis are simply worth remembering:

$$
\mathrm{d} \vec{S}=a\langle x, y, z\rangle \sin \phi \mathrm{d} \phi \mathrm{~d} \theta \quad \text { and } \quad \mathrm{d} \vec{S}=\langle x, y, 0\rangle \mathrm{d} z \mathrm{~d} \theta
$$

Example 34.3. Let

$$
\vec{F}=\left\langle x z^{2}, y z^{2}, z^{3}\right\rangle
$$

What is the flux out of the cylinder, height 1, radius 1, base in the xy-plane, centred at the origin?

Let's calculate this directly. There are three sides, the two flat ones S_{0} and S_{1} and the curved one S_{2}.

For S_{2}, we have a cylinder, so use second form

$$
\mathrm{d} \vec{S}=\langle x, y, 0\rangle \mathrm{d} z \mathrm{~d} \theta
$$

The flux across S_{3} is

$$
\iint_{S_{2}} x^{2} z^{2}+y^{2} z^{2} \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{0}^{1} z^{2} \mathrm{~d} z \mathrm{~d} \theta
$$

The inner integral is

$$
\int_{0}^{1} z^{2} \mathrm{~d} z=\left[\frac{z^{3}}{3}\right]_{0}^{1}=\frac{1}{3}
$$

So the flux across S_{2} is $2 \pi / 3 . \vec{F}$ is horizontal along S_{0}, so the flux across S_{0} is zero. Across $S_{1}, \hat{n}=\hat{k}$, so the flux is

$$
\iint_{S_{1}} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{S_{1}} 1 \mathrm{~d} S=\pi
$$

since the area of S_{1} is π.
In total, the flux is

$$
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{S_{0}} \vec{F} \cdot \mathrm{~d} \vec{S}+\iint_{S_{1}} \vec{F} \cdot \mathrm{~d} \vec{S}+\iint_{S_{2}} \vec{F} \cdot \mathrm{~d} \vec{S}=0+\pi+\frac{2 \pi}{3}=\frac{5 \pi}{3}
$$

Instead we could apply the divergence theorem:

$$
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}=\iiint_{V} \operatorname{div} \vec{F} \mathrm{~d} V=\iiint_{V} 5 z^{2} \mathrm{~d} V
$$

To calculate this integral use cylindrical coordinates

$$
\iiint_{V} 5 z^{2} \mathrm{~d} V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1} 5 z^{2} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=\frac{5 \pi}{3}
$$

Here is a summary of the various fundamental theorems relating integrals in different dimensions:

Dimension	Work done	Flux
$0-1$	FTC line integrals	
$1-2$	Green's +Stokes' theorem	Green's theorem (normal form)
$2-3$	Divergence	Not covered

