
34. Review II

It is probably helpful to take stock of the various integrals and dif-
ferentials we have encountered in this course:

Dimension Standard Vector
1 dt, ds d~r

2 dA d~S
3 dV Not covered

In dimension one the most basic integral is the line integral:∫
C

~F · d~r =

∫
C

M dx+N dy.

This integral represents the work done to move a particle along C in
a vector field ~F . To compute directly, parametrise C. If we use the
parameter t, we will get down to a standard one dimensional integral.
For example, suppose that

~F = xı̂+ ŷ

and C is the unit circle, oriented counterclockwise. Paremetrise C in
the standard way:

~r(t) = 〈cos t, sin t〉 where 0 ≤ t ≤ 2π.

Then

d~r = 〈− sin t, cos t〉 dt and 〈cos t, sin t〉.
Therefore ∮

C

~F · d~r =

∫ 2π

0

0dt = 0.

One can also use Green’s theorem. C bounds the unit disk R:∮
C

~F · d~r =

∫∫
R

curl ~F dA =

∫ 2π

0

∫ 1

0

(0− 0)r dr dθ = 0,

as expected.
A closely related line integral is the flux of ~F across C. We measure

the flux from left to right. The flux across C is∫
C

~F · n̂ ds.

To compute this, use the fact that n̂ is the unit tangent vector turned
through π/2 radians clockwise, so

n̂ ds = 〈dy,−dx〉.
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We have ∫
C

~F · n̂ ds =

∫
C

Mdy −N dx.

In the example above∫
C

~F · n̂ ds =

∫ 2π

0

cos2 t+ sin2 t dt = 2π.

One can also use Green’s theorem in normal form∫
C

~F · n̂ ds =

∫∫
R

div ~F dA =

∫∫
R

2 dA = 2π.

dA is the area element in the xy-plane. We have

dA = dx dy = r dr dθ.

Example 34.1. What is the area of the ellipse

(2x+ y)2 + (x− y)2 ≤ 5?

Use change of variables, u = 2x+ y and v = x− y. The Jacobian is

J =
∂(u, v)

∂(x, y)
=

∣∣∣∣ux uy
vx vy

∣∣∣∣ =

∣∣∣∣2 1
1 −1

∣∣∣∣ = −3.

So

du dv = 3 dx dy.

So the area of R is∫∫
R

1 dA =

∫∫
(2x+y)2+(x−y)2≤5

1 dx dy =

∫∫
u2+v2≤5

1

3
du dv =

5

3
π.

Example 34.2. Calculate∫ 1

0

∫ 1

y3

6y2

x2 + 2
dx dy.

We swap the order of integration. The region R of integration is

0 ≤ y ≤ 1 and y3 ≤ x ≤ 1.

Therefore∫ 1

0

∫ 1

y3

6y2

x2 + 2
dx dy =

∫∫
R

6y2

x2 + 2
dx dy =

∫ 1

0

∫ x1/3

0

6y2

x2 + 2
dy dx.

The inner integral is∫ x1/3

0

6y2

x2 + 2
dy =

[
2y3

x2 + 2

]x1/3
0

=
2x

2 + x2
.
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The outer integral is∫ 1

0

2x

x2 + 2
dx =

[
ln(x2 + 2)

]1
0

= ln 3/2.

In three dimensions, the volume form is

dV = dx dy dz = rdr dθ dz = ρ2 sinφdρ dφ dθ.

The trickiest thing is to calculate surface integrals in space. The
area form on a surface is

dS.

It plays the same role as the area form dA in the plane. More common
is

d~S = n̂ dS,

which is used to calculate flux out of S:∫∫
S

~F · d~S.

Note that we need to choose an orientation of S. There are many ways
to calculate the flux. If we parameterise S, ~r(u, v) using two parameters
u and v we have

d~S =
∂~r

∂u
× ∂~r

∂v
du dv.

If S is given by a single constraint g(x, y, z) = c, a constant, then

d~S =
~N

~N · k̂
dx dy and d~S =

~N

| ~N · k̂|
dx dy,

where ~N = ∇g and the first form always picks the upwards orientation
whilst the second form preserves the orientation. If S is given as the
graph of a function z = f(x, y) over a region R in the xy-plane, we
have

d~S = 〈−fx,−fy, 1〉 dx dy.

Formulas for spheres centred at the origin and cylinders with central
axis the z-axis are simply worth remembering:

d~S = a〈x, y, z〉 sinφ dφ dθ and d~S = 〈x, y, 0〉 dz dθ.

Example 34.3. Let
~F = 〈xz2, yz2, z3〉.

What is the flux out of the cylinder, height 1, radius 1, base in the
xy-plane, centred at the origin?
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Let’s calculate this directly. There are three sides, the two flat ones
S0 and S1 and the curved one S2.

For S2, we have a cylinder, so use second form

d~S = 〈x, y, 0〉 dz dθ.

The flux across S3 is∫∫
S2

x2z2 + y2z2 dr dθ =

∫ 2π

0

∫ 1

0

z2 dz dθ.

The inner integral is ∫ 1

0

z2 dz =

[
z3

3

]1
0

=
1

3
.

So the flux across S2 is 2π/3. ~F is horizontal along S0, so the flux

across S0 is zero. Across S1, n̂ = k̂, so the flux is∫∫
S1

~F · d~S =

∫∫
S1

1dS = π,

since the area of S1 is π.
In total, the flux is∫∫
S

~F ·d~S =

∫∫
S0

~F ·d~S+

∫∫
S1

~F ·d~S+

∫∫
S2

~F ·d~S = 0 +π+
2π

3
=

5π

3
.

Instead we could apply the divergence theorem:∫∫
S

~F · d~S =

∫∫∫
V

div ~F dV =

∫∫∫
V

5z2 dV.

To calculate this integral use cylindrical coordinates∫∫∫
V

5z2 dV =

∫ 2π

0

∫ 1

0

∫ 1

0

5z2r dz dr dθ =
5π

3
.

Here is a summary of the various fundamental theorems relating
integrals in different dimensions:

Dimension Work done Flux
0-1 FTC line integrals
1-2 Green’s +Stokes’ theorem Green’s theorem (normal form)
2-3 Divergence Not covered
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