
33. Review I

Example 33.1. We have two lines in R3, one given parametrically by

~r1(t) = 〈−4 + 5t, 1 + t,−2− t〉,
and the other given as the intersection of the two planes:

2x− y − z = 6 and x + y − 2z = 3.

What is the shortest distance between these two lines?

There are many different ways to solve this problem but all of them
start the same way, by first finding the equation of the second line
parametrically.

Note that each equation determines a plane and the intersection of
two planes is a line. A line is specified by two points. So we want to
find two points on the line.

To get a point on a line intersect with a plane. Let’s intersect with
the plane z = 0. The two equations reduce to

2x− y = 6

x + y = 3.

This is an inhomogeneous system of linear equation. We can rewrite
this as a matrix equation:

A~x = ~b where

(
2 −1
1 1

)(
x
y

)
=

(
6
3

)
.

This has a unique solution if and only if detA 6= 0.

detA =

∣∣∣∣2 −1
1 1

∣∣∣∣ = 3.

As the determinant is not zero, A is invertible:

A−1 =
1

detA

(
d −b
−c a

)
=

1

3

(
1 1
−1 2

)
.

If we are given A−1, then it is easy to solve A~x = ~b:

~x = A−1~b that is

(
x
y

)
=

1

3

(
1 1
−1 2

)(
6
3

)
=

(
3
0

)
.

So one point on the line is P = (3, 0, 0).
If we take the plane z = −1 then

2x− y = 5

x + y = 1.
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Arguing as above,(
x
y

)
=

1

3

(
1 1
−1 2

)(
5
1

)
=

(
2
−1

)
.

So another point on the line is Q = (2,−1,−1). The parametric
form of the second line is then

~r2(t) = ~P + t
−→
PQ = 〈3, 0, 0〉+ t〈−1,−1,−1〉 = 〈3− t,−t,−t〉.

So as to work with pluses rather than minuses, we switch the sign of
t to get the same line parametrised with the opposite orientation:

~r2(t) = 〈3 + t, t, t〉.
Now we turn to the problem of finding the two closest points P1

and P2 belonging to the two lines. There are many ways to solve this
problem. The first three ways use the geometric fact that the vector−−→
P1P2 is orthogonal to the direction of both lines.
Method #1: Find a plane Π containing the second line which is

parallel to the first line. Π is orthogonal to the direction of both lines:

~u = 〈5, 1,−1〉 and ~v = 〈1, 1, 1〉.
The cross product of ~u and ~v is therefore orthogonal to both lines:∣∣∣∣∣∣

ı̂ ̂ k̂
5 1 −1
1 1 1

∣∣∣∣∣∣ = ı̂

∣∣∣∣1 −1
1 1

∣∣∣∣− ̂

∣∣∣∣5 −1
1 1

∣∣∣∣+ k̂

∣∣∣∣5 1
1 1

∣∣∣∣ = 2ı̂− 6̂ + 4k̂.

So
~n = 〈1,−3, 2〉

is a normal vector to the plane Π. Π contains (2,−1,−1) (set t = −1
just to get a more interesting point than (3, 0, 0)). So the equation of
the plane is

〈x−2, y+1, z+1〉·〈1,−3, 2〉 = 0 that is (x−2)−3(y+1)+2(z+1) = 0,

so that rearranging we have x − 3y + 2z = 3. Pick any point of the
first line. If we set t = 0 we get R = (−4, 1,−2).

The line through R parallel to ~n intersects the plane Π at the closest
point R′ to R. This line is

~r(t) = 〈−4, 1,−2〉+ t〈1,−3, 2〉 = 〈−4 + t, 1− 3t,−2 + 2t〉.
This lies on the plane Π when

(t− 4)− 3(1− 3t) + 2(−2 + 2t) = 3 so that 14t = 14

But then t = 1. The closest point R′ is (−1,−2, 0).
−−→
RR′ = 〈1,−3, 2〉,
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so the shortest distance is√
(1 + 9 + 4) =

√
14.

Method #2: Find the two closest points P1 and P2 directly. Choose
different parametrisations for the first and second line:

~r1(s) = 〈−4 + 5s, 1 + s,−2− s〉 and ~r2(t) = 〈3 + t, t, t〉.

Then −−→
P1P2 = 〈7− 5s + t,−1− s + t, 2 + s + t〉.

We want this vector to be orthogonal to both ~u and ~v:

〈7−5s+t,−1−s+t, 2+s+t〉·〈5, 1,−1〉 = 0 and 〈7−5s+t,−1−s+t, 2+s+t〉·〈1, 1, 1〉 = 0.

−27s + 5t = −32

−5s + 3t = −8.

Using guess and check, we see that s = 1 and t = −1 works. The
two closest points are

P1 = (1, 2,−3) and P2 = (2,−1,−1).

As before −−→
P1P2 = 〈1,−3, 2〉,

and the shortest distance if again
√

14.
Method #3: Pick two random points on both lines.

R1 = 〈−4, 1,−2〉 and R2 = 〈3, 0, 0〉.

Then the distance we want is given by the projection of
−−−→
R1R2 = 〈7,−1, 2〉

onto ~n = 〈1,−3, 2〉. The length of the projection is given by

〈7,−1, 2〉 · 〈1,−3, 2〉
|〈1,−3, 2〉

=
7 + 3 + 4√

14
=
√

14.

Method #4: Like method #2, but now use calculus to minimise
the distance between P1 and P2. Note that if we minimise the distance
or the distance squared we get the same points. In practice we minimise
the distance squared, since this gives much simpler equations:

f(s, t) = (7−5s+t)2+(−1−s+t)2+(2+s+t)2 = 27s2−10st+3t2−64s+16t+54.

Find the critical points. First find partials:

fs = 54s− 10t− 64 and ft = −10s + 6t + 16.
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Set these equal to zero:

27s− 5t = 32

−5s + 3t = −16

We already know s = 1 and t = −1 will work.
Geometrically it is clear that we must have a minimum and there is

no maximum. But, again just to practice, let’s use the second derivative
test to check we have a minimum:

fss = 54 fst = −10 and ftt = 6.

Hence
A = 54 B = −10 and C = 6.

AC −B2 > 0. A > 0 so we have a minimum.
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