30. Line integrals

If

$$
\vec{F}=P \hat{\imath}+Q \hat{\jmath}+R \hat{k},
$$

is a vector field on \mathbb{R}^{3} and C is a curve in space then we can define the line integral

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

in the same way as we did in the plane. If we pick a parametrisation of C,

$$
\vec{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad \text { and } \quad a \leq t \leq b
$$

then we can express

$$
\mathrm{d} \vec{r}=\langle\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z\rangle=\vec{v}(t) \mathrm{d} t \quad \text { and } \quad \vec{F}=\langle P, Q, R\rangle
$$

in terms of t and integrate this. If \vec{F} represents force, the line integral represents the work done moving a particle from the start P_{0} to the end P_{1}.
Example 30.1. Let C be the parametric curve

$$
\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad 0 \leq t \leq 1 \quad \text { and } \quad \vec{F}=\langle y z, x z, x y\rangle .
$$

C is called the twisted cubic.
We express everything in terms of t,

$$
\mathrm{d} \vec{r}=\left\langle 1,2 t, 3 t^{2}\right\rangle \mathrm{d} t \quad \text { and } \quad \vec{F}=\left\langle t^{5}, t^{4}, t^{3}\right\rangle .
$$

So

$$
\vec{F} \cdot \mathrm{~d} \vec{r}=\left\langle t^{5}, t^{4}, t^{3}\right\rangle \cdot\left\langle 1,2 t, 3 t^{2}\right\rangle \mathrm{d} t=6 t^{5} \mathrm{~d} t
$$

The work done is then

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{1} 6 t^{5} \mathrm{~d} t=\left[t^{6}\right]_{0}^{1}=1
$$

Now let's suppose we go from $P_{0}=(0,0,0)$ to $P_{1}=(1,1,1)$ along a different path. Let's say we go parallel to $\hat{\imath}, C_{1}$, parallel to $\hat{\jmath}, C_{2}$ and then parallel to \hat{k}, C_{3}. Let

$$
C^{\prime}=C_{1}+C_{2}+C_{3} .
$$

So

$$
\int_{C^{\prime}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

Parametrise C_{1} in the obvious way

$$
\vec{r}(t)=\langle t, 0,0\rangle \quad 0 \leq t \leq 1
$$

Then

$$
\mathrm{d} \vec{r}=\langle 1,0,0\rangle \mathrm{d} t \quad \text { and } \quad \vec{F}=\langle 0,0,0\rangle
$$

So

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}=0
$$

Parametrise C_{2}

$$
\vec{r}(t)=\langle 1, t, 0\rangle \quad 0 \leq t \leq 1
$$

Then

$$
\mathrm{d} \vec{r}=\langle 0,1,0\rangle \mathrm{d} t \quad \text { and } \quad \vec{F}=\langle 0,0, t\rangle .
$$

We have

$$
\vec{F} \cdot \mathrm{~d} \vec{r}=\langle 0,0,1\rangle \cdot\langle 0,1,0\rangle \mathrm{d} t=0 \mathrm{~d} t
$$

So

$$
\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}=0
$$

Parametrise C_{3}

$$
\vec{r}(t)=\langle 1,1, t\rangle \quad 0 \leq t \leq 1
$$

Then

$$
\mathrm{d} \vec{r}=\langle 0,0,1\rangle \mathrm{d} t \quad \text { and } \quad \vec{F}=\langle t, t, 1\rangle .
$$

We have

$$
\vec{F} \cdot \mathrm{~d} \vec{r}=\langle t, t, 1\rangle \cdot\langle 0,0,1\rangle \mathrm{d} t=\mathrm{d} t
$$

So

$$
\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{1} \mathrm{~d} t=1
$$

The reason why both answers are the same is that \vec{F} is a gradient vector field,

$$
\vec{F}=\langle y z, x z, x y\rangle=\nabla(x y z)=\nabla f
$$

where $f(x, y, z)=x y z$. As before we have the fundamental theorem of calculus for line integrals

$$
\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=f\left(P_{1}\right)-f\left(P_{0}\right)
$$

As before this means the integral is path independent and \vec{F} is conservative. In our case
$f(0,0,0)=0 \quad f(1,1,1)=1, \quad$ so that $\quad f(1,1,1)-f(0,0,0)=1$.
Theorem 30.2. Let \vec{F} be a vector field on \mathbb{R}^{3} (or more generally a simply connected region; more about this later).
\vec{F} is a gradient vector field if and only if

$$
P_{y}=Q_{x}, \quad P_{z}=R_{x} \quad \text { and } \quad Q_{z}=R_{y}
$$

Again, one direction is reasonably clear. If

$$
\vec{F}=\nabla f
$$

then

$$
P=f_{x}, \quad Q=f_{y} \quad \text { and } \quad R=f_{z}
$$

so that

$$
P_{y}=f_{x y} \quad \text { and } \quad Q_{x}=f_{y x}
$$

so that the equality $P_{y}=Q_{x}$ is just saying the mixed partials of f are equal.

Example 30.3. For which a and b is

$$
\vec{F}=a x y \hat{\imath}+\left(x^{2}+z^{3}\right) \hat{\jmath}+\left(b y z^{2}-4 z^{3}\right) \hat{k}
$$

a gradient vector field?
We have

$$
P=a x y, \quad Q=x^{2}+z^{3} \quad \text { and } \quad R=b y z^{2}-4 z^{3} .
$$

$Q_{x}=2 x$ and $P_{y}=a x$, so that

$$
a x=P_{y}=Q_{x}=2 x
$$

and so $a=2$. $Q_{z}=3 z^{2}$ and $R_{y}=b z^{2}$ so that

$$
b z^{2}=R_{y}=Q_{z}=3 z^{2}
$$

and so $b=3$. Finally,

$$
P_{z}=0 \quad \text { and } \quad R_{x}=0,
$$

so $P_{z}=R_{x}$ is clear. Hence

$$
\vec{F}=2 x y \hat{\imath}+\left(x^{2}+z^{3}\right) \hat{\jmath}+\left(3 y z^{2}-4 z^{3}\right) \hat{k}
$$

is conservative.
Let's look for a potential function $f(x, y, z)$. We want to solve three PDEs

$$
\frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+z^{3} \quad \text { and } \quad \frac{\partial f}{\partial z}=3 y z^{2}-4 z^{3}
$$

We have

$$
\frac{\partial f}{\partial x}=2 x y
$$

Integrate both sides with respect to x.

$$
f(x, y, z)=\int \underset{3}{2 x y \mathrm{~d} x}=x^{2} y+g(y, z)
$$

Note that the constant of integration is actually a function of both y and z. In other words

$$
\frac{\partial g(y, z)}{\partial x}=0
$$

Let's take this answer for f and plug this into the second PDE.

$$
\frac{\partial f}{\partial y}=x^{2}+z^{3} \quad \text { so that } \quad x^{2}+\frac{\partial g(y, z)}{\partial z}=x^{2}+z^{3} .
$$

Cancelling we get

$$
\frac{\partial g(y, z)}{\partial y}=z^{3}
$$

Integrating this with respect to y we get

$$
g(y, z)=\int z^{3} \mathrm{~d} y=z^{3} y+h(z)
$$

where the constant of integration is an abritrary function of z. So now we know

$$
f(x, y, z)=x^{2} y+z^{3} y+h(z) .
$$

Finally, we plug this back into the third PDE:

$$
\frac{\partial f}{\partial z}=3 y z^{2}-4 z^{3} \quad \text { so that } \quad 3 y z^{2}+\frac{d h}{d z}=3 y z^{2}-4 z^{3} .
$$

Cancelling we get

$$
\frac{d h}{d z}=-4 z^{3}
$$

Integrating with respect to z, we get

$$
h(z)=-z^{4}+c .
$$

We can take $c=0$. Putting all of this together

$$
f(x, y, z)=x^{2} y+z^{3} y-z^{4} .
$$

One can define a vector field which measures how far \vec{F} is from being conservative.

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\nabla \times \vec{F} \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\hat{\imath}\left|\begin{array}{ll}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
Q & R
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
P & R
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
P & Q
\end{array}\right| \\
& =\left(R_{y}-Q_{z}\right) \hat{\imath}-\left(R_{x}-P_{z}\right) \hat{\jmath}+\left(Q_{x}-P_{y}\right) \hat{k} .
\end{aligned}
$$

This is the curl of the vector field \vec{F}. It measures the angular velocity. For example,

$$
\vec{v}=\langle-\omega y, \omega x, 0\rangle,
$$

represents rotation around z-axis with constant angular velocity ω.

$$
\operatorname{curl} \vec{v}=\nabla \times \vec{v}=2 \omega \hat{k} .
$$

So the magnitude is twice the angular velocity and the direction is the axis of rotation.

