3. Matrices

Often if one starts with a coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$, sometimes it is better to work in a coordinate system $\left(y_{1}, y_{2}, y_{3}\right)$ related to the old coordinate system in a simple way:

$$
\begin{aligned}
2 x_{1}-x_{2}+x_{3} & =y_{1} \\
-3 x_{1}+x_{2}+4 x_{3} & =y_{2} \\
2 x_{1}-x_{2}+x_{3} & =y_{3} .
\end{aligned}
$$

Matrices are simply a way to encode this transformation in a compact form

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \\
-3 & 1 & 4 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) .
$$

In even more compact notation, $A \vec{x}=\vec{y}$, where A is a 3×3 matrix, \vec{x} is a column vector, a 3×1 matrix (3 rows, 1 column) and \vec{y} has the same shape. To get the entries of the product $A \vec{x}$ take the dot product of a row from A and a column from \vec{x}.

More generally, if we want to multiply two matrices A and B, take the dot product of the rows of A and the columns of B :

$$
\left(\begin{array}{cccc}
2 & 3 & 1 & 2 \\
-1 & -1 & 3 & 4 \\
0 & -1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & 3 \\
-3 & -2 \\
5 & 0
\end{array}\right)=\left(\begin{array}{ll}
* & * \\
* & * \\
* & x
\end{array}\right)
$$

Question 3.1. What is x ?
It is the entry obtained by taking the dot product of the 3rd row of A and the 2 nd column of B :

$$
x=\langle 0,-1,1,1\rangle \cdot\langle 1,3,-2,0\rangle=0-3-2+0=-5 .
$$

For the product $A B$ to make sense, A must have the same number of columns as B has rows.

Question 3.2. Is $A B=B A$ in general?
No, for four different reasons.
Sometimes the product make sense one way but not the other way. For example if A is 4×2 and B is 2×3 the product $A B$ is a 4×3 matrix but the product $B A$ does not make sense (3 does not match 4).

Sometimes the product makes sense both ways but the shape is different. For example if A is 3×1 and B is $1 \times 3, A B$ is a 3×3 (consisting of the nine dot products obtained by multiplying an entry of A with an entry of B). But $B A$ has shape 1×1, one dot product in \mathbb{R}^{3}.

If A and B are both square the product makes sense both ways and has the same shape, but it is still not the same. For example, take

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Then the first entry of $A B$ is 4 but the first entry of $B A$ is 1 .
Finally, it is clear that matrix multiplication does not commute if one thinks about transformations. E.g. if A corresponds to reflection in the y-axis and B to rotation through $\pi / 4$, then $A B$ represents rotation through $\pi / 4$ and reflection in the y-axis and $B A$ represents reflection in the y-axis followed by rotation through $\pi / 4$.

Figure 1. $A B$ vs $B A$
There is one very special square matrix, called the identity matrix. For example,

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

As a transformation, I_{3} does not do anything. In fact,

$$
I_{3} B=B \quad \text { and } \quad A I_{3}=A
$$

whenever these products make sense.
Question 3.3. What does the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

do as a transformation?
Well it replaces the vector $\left\langle a_{1}, a_{2}\right\rangle$ by the vector $\left\langle a_{2}, a_{1}\right\rangle$. So $A \hat{\imath}=\hat{\jmath}$ and $A \hat{\jmath}=\hat{\imath}$. A represents reflection in the line $y=x$. So $A^{2}=I_{2}$.

Probably the most important property of the determinant of a matrix is the following

Theorem 3.4. Let A and B be square matrices of the same size.
Then

$$
\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B
$$

Some transformations are reversible. If A represents a reversible transformation, the matrix corresponding to the inverse transformation is called the inverse matrix A^{-1}. We have

$$
A \vec{x}=\vec{y} \quad \text { and } \quad \vec{x}=A^{-1} \vec{y},
$$

and

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I .
$$

In words the inverse matrix undoes the effect of A.
There is a very useful characterisation of which matrices are invertible (have inverses):

Theorem 3.5. A is invertible if and only if $\operatorname{det} A \neq 0$.
Here is a recipe for calculating the inverse of a matrix. This recipe is perfect for 2×2 matrices, (barely) acceptable for 3×3 matrices and simply diabolical for anything larger.

First 2×2. If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { then } \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

In general, one adopts the following procedure, which we illustrate with the following 3×3 matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 3 & 12 \\
5 & 6 & 0
\end{array}\right)
$$

Step 1: Form the matrix of minors. In the (i, j) entry, put the determinant you get by erasing the i th row and j th column of A :

$$
\left(\begin{array}{ccc}
-72 & -60 & -15 \\
-18 & -15 & -4 \\
15 & 12 & 3
\end{array}\right)
$$

For example the entry in the second row, third column is obtained by taking the matrix A and deleting the second row and third column to get the matrix

$$
\left(\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right) .
$$

Now just take the determinant of this 2×2 matrix

$$
\left|\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right|=6-10=-4 .
$$

Step 2: Now flip the signs of the matrix of minors according to the following pattern:

$$
\left(\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

The result is the matrix of cofactors:

$$
\left(\begin{array}{ccc}
-72 & 60 & -15 \\
18 & -15 & 4 \\
15 & -12 & 3
\end{array}\right)
$$

Step 3: Now take the transpose (flip the matrix about its main diagonal) to get the adjoint matrix:

$$
\operatorname{Adj}(A)=\left(\begin{array}{ccc}
-72 & 18 & 15 \\
60 & -15 & -12 \\
-15 & 4 & 3
\end{array}\right)
$$

Step 4: Divide by the determinant to get the inverse matrix. In our case the determinant is 3 . So we divide by 3 ,

$$
A^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
-72 & 18 & 15 \\
60 & -15 & -12 \\
-15 & 4 & 3
\end{array}\right)=\left(\begin{array}{ccc}
-24 & 6 & 5 \\
20 & -5 & -4 \\
-5 & 4 / 3 & 1
\end{array}\right)
$$

Finally, let's check that this is the right answer. We should have

$$
A^{-1} A=\left(\begin{array}{ccc}
-24 & 6 & -5 \\
20 & -5 & 4 \\
-5 & 4 / 3 & -1
\end{array}\right)\left(\begin{array}{ccc}
-72 & -60 & -15 \\
-18 & -15 & -4 \\
15 & 12 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3}
$$

Let's pick an entry at random. Let's calculate the entry in the 2nd row, 3 rd column. We should get 0 . In fact we get the dot product of the 2 nd row of the first matrix and the 3rd column of the second matrix:

$$
\langle 20,-5,4\rangle \cdot\langle-15,-4,3\rangle=0
$$

which is indeed correct.

