
28. How to compute the flux

Let’s start with the case when S is the graph of a function z = f(x, y)
lying over a region R of the plane. If we have a small rectangle with
sides ∆x and ∆y in R then in space we roughly we get a parallelogram
with vertices

(x, y, f(x, y)) (x+ ∆x, y, f(x+ ∆x, y))

(x, y + ∆y, f(x, y + ∆y)) (x+ ∆x, y + ∆y, f(x+ ∆x, y + ∆y)).

By linear approximation,

f(x+∆x, y) ≈ f(x, y)+fx(x, y)∆x and f(x, y+∆y) ≈ f(x, y)+fy(x, y)∆y.

and so on. So we have a parallelogram with two sides

~v = 〈∆x, 0, fx(x, y)∆x〉 = ∆x〈1, 0, fx〉 and ~w = 〈0,∆y, fy(x, y)∆y〉 = ∆y〈0, 1, fy〉.

The cross product is both a vector normal to the base of the paral-
lelogram and has length the area of the parallelogram. We have∣∣∣∣∣∣

ı̂ ̂ k̂
1 0 fx
0 1 fy

∣∣∣∣∣∣ = ı̂

∣∣∣∣0 fx
1 fy

∣∣∣∣− ̂ ∣∣∣∣1 fx
0 fy

∣∣∣∣+ k̂

∣∣∣∣1 0
0 1

∣∣∣∣ = −fxı̂− fy ̂+ k̂.

It follows that

∆~S ≈ ~v × ~w = ∆x∆y〈−fx,−fy, 1〉.

Taking the limit as ∆x and ∆y go to zero, we get

d~S = 〈−fx,−fy, 1〉 dx dy.

We can use this to recover

n̂ =
1√

1 + f 2
x + f 2

y

〈−fx,−fy, 1〉 and dS = |d~S| =
√

1 + f 2
x + f 2

y dx dy.

In practice, it is usually better not to find the separate pieces.

Question 28.1. Find the flux of ~F = zk̂ across the surface S given by
the paraboloid z = x2 + y2 above the circle R in the xy-plane, given by
x2 + y2 ≤ 1, oriented so the normal points upwards (which is into the
paraboloid).

d~S = 〈−2x,−2y, 1〉 dx dy.

Hence
~F · d~S = z dx dy.
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So the flux is∫∫
S

~F · d~S =

∫∫
R

z dx dy =

∫ 2π

0

∫ 1

0

r3 dr dθ.

The inner integral is ∫ 1

0

r3 dr =

[
r4

4

]1
0

=
1

4
.

The outer integral is ∫ 2π

0

1

4
dθ =

π

2
.

More generally, suppose S is given as a parametric surface x(u, v),
y(u, v) and z(u, v), then we can integrate using u and v, so that ~r =
~r(u, v). Arguing as above,

d~S =
∂~r

∂u
× ∂~r

∂v
du dv.

Apart from parametrisations, a surface S might be given by a con-
straint. S might be given implicitly, by an equation g(x, y, z) = 0. In
this case

~N = ∇g = 〈gx, gy, gz〉,
is normal to S and so

n̂ =
~N

| ~N |
is a unit normal.

To get ∆S, consider the projection to the xy-plane (assume that the
plane is not vertical; if it is vertical, just project onto the xz-plane or
the yz-plane). The key point is to figure out how area changes under
projection. I claim

∆A = cosα∆S,

where α is the angle of the surface with the horizontal, that is, the
angle between ~N and the vertical k̂. The reason for this is the same
reason that the projection of a circle, lying in a slanted plane, is an
ellipse. Note that every plane contains one horizontal line. To figure
out how area changes under projection, one can rotate the plane so that
this line is the y-axis. So lengths in the y direction are unchanged. In
the x-direction, one gets a right angled triangle. The original length
is a hypotenuse and the new length is the adjacent. So lengths in the
x-direction scale by cosα. In total the area scales by cosα. But

~N · k̂ = |N | cosα.
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Putting all of this together,

d~S =
~N

| ~N.k̂|
dx dy.

Example 28.2. Suppose that

g(x, y, z) = z − f(x, y),

so that g = 0 defines the graph of f . Then

~N = ∇g = 〈−fx,−fy, 1〉 and ~N · k̂ = 1,

so we get the old formula.

Theorem 28.3 (Divergence Theorem). Let S be a closed surface bound-

ing a solid D, oriented outwards. Let ~F be a vector field with continuous
partial derivatives. Then∫∫

S

~F · d~S =

∫∫∫
D

div ~F dV where div ~F = Px +Qy +Rz.

This has the same physical interpretation as before. The total amount
of material leaving S is equal to the amount of material created (or de-
stroyed) inside the solid D.

Example 28.4. Let ~F = zk̂ and let S be the surface of a sphere of
radius a.

div ~F = 0 + 0 + 1 = 1,

and so ∫∫
S

~F · d~S =

∫∫∫
D

div ~F dV =

∫∫∫
D

1 dV =
4

3
πa3.

It is convenient to introduce some symbolic notation.

∇ = 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉

is called the del operator.

∇f = 〈∂f
∂x
,
∂f

∂y
,
∂f

∂z
〉

is the gradient. We have

div ~F = ∇ · ~F = 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉 · 〈P,Q,R〉 =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

is the divergence.
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