27. Vector fields in space

A vector field in space is given by

$$
\vec{F}=P \hat{\imath}+Q \hat{\jmath}+R \hat{k}=\langle P, Q, R\rangle .
$$

Here the components, P, Q and R are scalar functions of x, y and z. \vec{F} could be a force field;

$$
\vec{F}=-\frac{c\langle x, y, z\rangle}{\rho^{3}},
$$

is the force due to gravity. There is both an electric \vec{E} and a magnetic field \vec{B}. There are velocity fields \vec{v} and gradient vector fields.

In space, we can measure the flux of \vec{F} across a surface S,

$$
\iint_{S} \vec{F} \cdot \hat{n} \mathrm{~d} S
$$

Here \hat{n} is a unit normal to the surface. There are two choices of \hat{n}; we have to choose an orientation, a direction which we decide is positive.

Notation:

$$
\mathrm{d} \vec{S}=\hat{n} \mathrm{~d} S
$$

Suppose that \vec{F} represents the velocity vector field of some fluid. The amount of water that crosses a small piece of surface in unit time is approximately a parallelepiped with area of base ΔS and height $\vec{F} \cdot \hat{n}$,

$$
\vec{F} \cdot \hat{n} \Delta S
$$

Suppose

$$
\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k},
$$

and S is the surface of a sphere of radius a, centred at the origin. Orient the surface S so that the unit normal points outwards,

$$
\hat{n}=\frac{1}{a}\langle x, y, z\rangle .
$$

In this case

$$
\vec{F} \cdot \hat{n}=\frac{1}{a}\left(x^{2}+y^{2}+z^{2}\right)=a .
$$

Hence

$$
\iint_{S} \vec{F} \cdot \hat{n} \mathrm{~d} S=\iint_{S} a \mathrm{~d} S=4 \pi a^{3}
$$

Now suppose we work with $\vec{F}=z \hat{k}$. Then

$$
\vec{F} \cdot \hat{n}=\frac{z^{2}}{a}
$$

So the flux is

$$
\iint_{S} \vec{F} \cdot \hat{n} \mathrm{~d} S=\iint_{S} \frac{z^{2}}{a} \mathrm{~d} S=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{a^{2} \cos ^{2} \phi}{a} a^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta .
$$

The inner integral is

$$
\int_{0}^{\pi} a^{3} \cos ^{2} \phi \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta=\left[-\frac{a^{3}}{3} \cos ^{3} \phi\right]_{0}^{\pi}=\frac{2 a^{3}}{3} .
$$

The outer integral is

$$
\int_{0}^{2 \pi} \frac{2 a^{3}}{3} \mathrm{~d} \theta=\frac{4 \pi a^{3}}{3}
$$

In general, it can be quite hard to parametrise a surface. We will need two parameters to describe the surface and we must express

$$
\vec{F} \cdot \hat{n} \mathrm{~d} S,
$$

in terms of them. We must also orient the surface:
Question 27.1. Can one always orient a surface?
In fact, somewhat surprisingly, the answer is no. The Möbius band is a surface that cannot be oriented.

To begin with, here are some easy special cases:
(1) If $z=a$ is a horizontal plane then

$$
\mathrm{d} \vec{S}=\hat{k} \mathrm{~d} x \mathrm{~d} y
$$

(here we choose the upwards orientation).
(2) For the surface of a sphere of radius a centred at the origin then

$$
\mathrm{d} \vec{S}=\hat{n} a^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta
$$

where

$$
\hat{n}=\frac{1}{a}\langle x, y, z\rangle,
$$

so that

$$
\mathrm{d} \vec{S}=a \sin \phi\langle x, y, z\rangle \mathrm{d} \phi \mathrm{~d} \theta
$$

(3) For a cylinder of radius a centred on the z-axis, use z, θ.

$$
\hat{n}=\frac{1}{a}\langle x, y, 0\rangle,
$$

which points radially out of the cylinder.

$$
\mathrm{d} S=a \mathrm{~d} z \mathrm{~d} \theta
$$

so that

$$
\mathrm{d} \vec{S}=\langle x, y, 0\rangle \mathrm{d} z \mathrm{~d} \theta
$$

(4) For the graph of a function $f(x, y)$,

$$
\mathrm{d} \vec{S}=\left\langle-f_{x},-f_{y}, 1\right\rangle \mathrm{d} x \mathrm{~d} y
$$

