## 26. SPHERICAL COORDINATES; APPLICATIONS TO GRAVITATION

We have already seen that sometimes it is better to work in cylindrical coordinates. Spherical coordinates $(\rho, \phi, \theta)$ are like cylindrical coordinates, only more so. $\rho$ is the distance to the origin; $\phi$ is the angle from the $z$-axis; $\theta$ is the same as in cylindrical coordinates.

To get from spherical to cylindrical, use the formulae:

$$
\begin{aligned}
r & =\rho \sin \phi \\
\theta & =\theta \\
z & =\rho \cos \phi .
\end{aligned}
$$

As

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

we have

$$
\begin{aligned}
x & =\rho \cos \theta \sin \phi \\
y & =\rho \sin \theta \sin \phi \\
z & =\rho \cos \phi .
\end{aligned}
$$

On the other hand,

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}} .
$$

The equation

$$
\rho=a,
$$

represents the surface of a sphere. On the surface of the sphere, $\phi$ constant corresponds to latitude, although $\phi=0$ represents the north pole, $\phi=\pi / 2$ represents the equator and $\phi=\pi$ represents the south pole. $\theta$ constant represents longitude.

Question 26.1. What does the equation

$$
\phi=\pi / 4
$$

represent?
It represents a cone, through the origin. In cylindrical coordinates we have

$$
z=r=\sqrt{x^{2}+y^{2}} .
$$

On the other hand, the equation

$$
\phi=\pi / 2
$$

represents the $x y$-plane.

We already know the volume element in Cartesian and cylindrical coordinates:

$$
\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=r \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z
$$

How about in spherical coordinates? We have to calculate the volume of the region when we have a small change in all three coordinates, $\Delta \rho$, $\Delta \theta$ and $\Delta \phi$.

First what happens if we take a sphere of constant radius $\rho=a ? \Delta \theta$ and $\Delta \phi$ trace out a small region on the surface of the sphere, which is approximately a rectangle. The side corresponding to $\Delta \phi$ is part of the arc of a great circle of radius $a$. So the length of this side is $a \Delta \phi$. The side corresponding to $\Delta \theta$ is part of the arc of a circle, of radius $r=a \sin \phi$. So the length of this side is $a \sin \phi \Delta \theta$. The area of the region is therefore approximately

$$
a^{2} \sin \phi \Delta \theta \Delta \phi
$$

The volume is then approximately given by

$$
\Delta V \approx \rho^{2} \sin \phi \Delta \theta \Delta \phi \Delta \rho
$$

So

$$
\mathrm{d} V=\rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

Let's consider again:
Example 26.2. What is the volume of the region where $z>1-y$ and $x^{2}+y^{2}+z^{2}<1$ ?

Note that the closest point on the plane $z=1-y$ to the origin is $(1 / 2,1 / 2)$. So the distance of the plane $z=1-y$ from the origin is $1 / \sqrt{2}$. If we rotate the plane so it is horizontal, we want the volume of the region above the horizontal plane

$$
z=\frac{1}{\sqrt{2}}
$$

inside the sphere. We can figure this out in cylindrical or spherical coordinates. We carry out the caculation in spherical coordinates for practice.

The plane is given by

$$
\rho \cos \phi=z=\frac{1}{\sqrt{2}} \quad \text { that is } \quad \rho=\frac{\sec \phi}{\sqrt{2}} \text {. }
$$

The region is symmetric with respect to $\theta$, so that

$$
0 \leq \theta_{2} \leq 2 \pi
$$

For $\phi$ we start at the North pole and we go down to $\pi / 4$. So the volume is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{\frac{1}{\sqrt{2}} \sec \phi}^{1} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

The force due to gravity on a point mass $m$ at the origin by a body of mass $\Delta M$ at $(x, y, z)$ is given by

$$
|\vec{F}|=\frac{G m \Delta M}{\rho^{2}}
$$

Thus

$$
\vec{F}=\frac{G m \Delta M}{\rho^{3}}\langle x, y, z\rangle .
$$

If we have a body, with mass density $\delta$, then we have to sum together the contributions from each little piece of mass $\Delta M \approx \delta \Delta V$. Thus the force due to gravity on a point mass at the origin is

$$
\vec{F}=\iiint_{R} \frac{G m\langle x, y, z\rangle}{\rho^{3}} \delta \mathrm{~d} V
$$

So the $z$-component of the force is

$$
F_{z}=\iiint_{R} \frac{G m z}{\rho^{3}} \delta \mathrm{~d} V
$$

In general, always try to place the point mass at the origin and put the body so that the $z$-axis is an axis of symmetry (if this is possible). Then

$$
\vec{F}=\left\langle 0,0, F_{z}\right\rangle
$$

and it suffices to compute the $z$-component. In spherical coordinates, we get

$$
\begin{aligned}
F_{z} & =G m \iiint_{R} \frac{z}{\rho^{3}} \delta \mathrm{~d} V \\
& =G m \iiint_{R} \frac{\rho \cos \phi}{\rho^{3}} \rho^{2} \sin \phi \delta \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =G m \iiint_{R} \delta \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
\end{aligned}
$$

Newton's Theorem To calculate the gravitational attraction of a spherical planet of uniform density, one may treat the sphere as a point mass.

Let's show this is true when the point mass is on the surface of the sphere. Assume the planet has radius $a$, put the point mass at the
origin and make this the south pole of the sphere. Then

$$
\begin{aligned}
F_{z} & =G m \iiint_{R} \delta \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =G m \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2 a \cos \phi} \delta \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta .
\end{aligned}
$$

The inner integral is

$$
\int_{0}^{2 a \cos \phi} \delta \cos \phi \sin \phi \mathrm{~d} \rho=[\delta \cos \phi \sin \phi \rho]_{0}^{2 a \cos \phi}=2 a \delta \cos ^{2} \phi \sin \phi
$$

The middle integral is

$$
\int_{0}^{\pi / 2} 2 a \delta \cos ^{2} \phi \sin \phi \mathrm{~d} \phi=\left[-\frac{2}{3} a \delta \cos ^{3} \phi\right]_{0}^{\pi / 2}=\frac{2}{3} a \delta
$$

The outer integral is

$$
\int_{0}^{2 \pi} \frac{2}{3} a \delta \mathrm{~d} \theta=\left[\frac{2}{3} a \delta\right]_{0}^{2 \pi}=\frac{4 \pi}{3} a \delta
$$

So the integral is

$$
G m \frac{4 \pi}{3} a \delta=\frac{G m M}{a^{2}},
$$

since the mass of the planet is

$$
M=\delta \frac{4 \pi a^{3}}{3}
$$

