26. SPHERICAL COORDINATES; APPLICATIONS TO GRAVITATION

We have already seen that sometimes it is better to work in cylin-
drical coordinates. Spherical coordinates (p, ¢,0) are like cylindrical
coordinates, only more so. p is the distance to the origin; ¢ is the
angle from the z-axis; € is the same as in cylindrical coordinates.

To get from spherical to cylindrical, use the formulae:

r = psin ¢
=40
Z = pcos ¢.
As
x =rcosf
y =rsinf
z =z,
we have

x = pcosfsing
y = psinfsin ¢
2z = pcos .

On the other hand,

p=r2+y2+22=Vr2 422

The equation
p=a,
represents the surface of a sphere. On the surface of the sphere, ¢
constant corresponds to latitude, although ¢ = 0 represents the north

pole, ¢ = 7/2 represents the equator and ¢ = 7 represents the south
pole. 6 constant represents longitude.

Question 26.1. What does the equation

¢=m/4
represent?

It represents a cone, through the origin. In cylindrical coordinates
we have
z2=1r =2+ 1y>

On the other hand, the equation

¢ =m/2,

represents the xy-plane.



We already know the volume element in Cartesian and cylindrical
coordinates:

dV =dxdydz = rdrdfdz.

How about in spherical coordinates? We have to calculate the volume
of the region when we have a small change in all three coordinates, Ap,
A6 and Ag.

First what happens if we take a sphere of constant radius p = a? A#
and A¢ trace out a small region on the surface of the sphere, which
is approximately a rectangle. The side corresponding to A¢ is part of
the arc of a great circle of radius a. So the length of this side is aAg.
The side corresponding to A# is part of the arc of a circle, of radius
r = asing. So the length of this side is asin pAf. The area of the
region is therefore approximately

a’ sin pAOAP.

The volume is then approximately given by

AV = p?sin pAOAGAp.
So

dV = p?sin ¢ dp de db.

Let’s consider again:

Example 26.2. What is the volume of the region where z > 1 —y and
2yt 22 <1?

Note that the closest point on the plane z = 1 — y to the origin is
(1/2,1/2). So the distance of the plane z = 1 — y from the origin is
1/ V2. If we rotate the plane so it is horizontal, we want the volume of
the region above the horizontal plane

1

V2’
inside the sphere. We can figure this out in cylindrical or spherical
coordinates. We carry out the caculation in spherical coordinates for

practice.
The plane is given by

sec ¢

7

1
pCosp =z = — that is p=

V2

The region is symmetric with respect to 6, so that

0<6<2m.
2



For ¢ we start at the North pole and we go down to 7/4. So the volume

1S
2r  pw/4 Pl
/ / / p’sinddpdedo.
0 0 %semb

The force due to gravity on a point mass m at the origin by a body
of mass AM at (x,y, z) is given by

- GmAM
p
Thus
- GmAM
F = T(Sﬁ,y, Z>.

If we have a body, with mass density d, then we have to sum together
the contributions from each little piece of mass AM ~ JAV. Thus the
force due to gravity on a point mass at the origin is

ﬁ:///%?MCW
R P

So the z-component of the force is

Fz:///GT;LZ(SdV.
R P

In general, always try to place the point mass at the origin and put
the body so that the z-axis is an axis of symmetry (if this is possible).
Then

—

F =10,0,F.),

and it suffices to compute the z-component. In spherical coordinates,

we get
z
RP
:Gm///pcg3s¢p28in¢6dpd¢d9
R

= Gm///RécosqbsingbdpdgzﬁdQ.

Newton’s Theorem To calculate the gravitational attraction of a
spherical planet of uniform density, one may treat the sphere as a point
mass.

Let’s show this is true when the point mass is on the surface of the

sphere. Assume the planet has radius a, put the point mass at the
3




origin and make this the south pole of the sphere. Then

F, = Gm///écosgbsingbdpdgbd&
R
2r  pw/2  p2acos¢
= Gm/ / / dcos¢psingpdpdedb.
o Jo 0

The inner integral is
2a cos ¢

2a cos ¢
/ dcosgsingpdp = [5 cos ¢ sin gbp] = 2a6 cos® ¢ sin ¢.
0

0
The middle integral is
w/2

/2 2 2
/ 2a6 cos® ¢ sin pdg = [ — §a5 cos® 4 = ga&
0

0
The outer integral is

21 2m
/ 2(15 df = [gad] = 4—7Ta6.
0 3 3 1, 3
So the integral is

4 GmM
Gm?aé =—a
since the mass of the planet is
4rra’
M=90 .
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