
26. Spherical coordinates; applications to gravitation

We have already seen that sometimes it is better to work in cylin-
drical coordinates. Spherical coordinates (ρ, φ, θ) are like cylindrical
coordinates, only more so. ρ is the distance to the origin; φ is the
angle from the z-axis; θ is the same as in cylindrical coordinates.

To get from spherical to cylindrical, use the formulae:

r = ρ sinφ

θ = θ

z = ρ cosφ.

As

x = r cos θ

y = r sin θ

z = z,

we have

x = ρ cos θ sinφ

y = ρ sin θ sinφ

z = ρ cosφ.

On the other hand,

ρ =
√
x2 + y2 + z2 =

√
r2 + z2.

The equation
ρ = a,

represents the surface of a sphere. On the surface of the sphere, φ
constant corresponds to latitude, although φ = 0 represents the north
pole, φ = π/2 represents the equator and φ = π represents the south
pole. θ constant represents longitude.

Question 26.1. What does the equation

φ = π/4

represent?

It represents a cone, through the origin. In cylindrical coordinates
we have

z = r =
√
x2 + y2.

On the other hand, the equation

φ = π/2,

represents the xy-plane.
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We already know the volume element in Cartesian and cylindrical
coordinates:

dV = dx dy dz = rdr dθ dz.

How about in spherical coordinates? We have to calculate the volume
of the region when we have a small change in all three coordinates, ∆ρ,
∆θ and ∆φ.

First what happens if we take a sphere of constant radius ρ = a? ∆θ
and ∆φ trace out a small region on the surface of the sphere, which
is approximately a rectangle. The side corresponding to ∆φ is part of
the arc of a great circle of radius a. So the length of this side is a∆φ.
The side corresponding to ∆θ is part of the arc of a circle, of radius
r = a sinφ. So the length of this side is a sinφ∆θ. The area of the
region is therefore approximately

a2 sinφ∆θ∆φ.

The volume is then approximately given by

∆V ≈ ρ2 sinφ∆θ∆φ∆ρ.

So

dV = ρ2 sinφ dρ dφ dθ.

Let’s consider again:

Example 26.2. What is the volume of the region where z > 1− y and
x2 + y2 + z2 < 1?

Note that the closest point on the plane z = 1 − y to the origin is
(1/2, 1/2). So the distance of the plane z = 1 − y from the origin is
1/
√

2. If we rotate the plane so it is horizontal, we want the volume of
the region above the horizontal plane

z =
1√
2
,

inside the sphere. We can figure this out in cylindrical or spherical
coordinates. We carry out the caculation in spherical coordinates for
practice.

The plane is given by

ρ cosφ = z =
1√
2

that is ρ =
secφ√

2
.

The region is symmetric with respect to θ, so that

0 ≤ θ ≤ 2π.
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For φ we start at the North pole and we go down to π/4. So the volume
is ∫ 2π

0

∫ π/4

0

∫ 1

1√
2
secφ

ρ2 sinφ dρ dφ dθ.

The force due to gravity on a point mass m at the origin by a body
of mass ∆M at (x, y, z) is given by

|~F | = Gm∆M

ρ2
.

Thus

~F =
Gm∆M

ρ3
〈x, y, z〉.

If we have a body, with mass density δ, then we have to sum together
the contributions from each little piece of mass ∆M ≈ δ∆V . Thus the
force due to gravity on a point mass at the origin is

~F =

∫∫∫
R

Gm〈x, y, z〉
ρ3

δ dV.

So the z-component of the force is

Fz =

∫∫∫
R

Gmz

ρ3
δ dV.

In general, always try to place the point mass at the origin and put
the body so that the z-axis is an axis of symmetry (if this is possible).
Then

~F = 〈0, 0, Fz〉,
and it suffices to compute the z-component. In spherical coordinates,
we get

Fz = Gm

∫∫∫
R

z

ρ3
δ dV

= Gm

∫∫∫
R

ρ cosφ

ρ3
ρ2 sinφδ dρ dφ dθ

= Gm

∫∫∫
R

δ cosφ sinφ dρ dφ dθ.

Newton’s Theorem To calculate the gravitational attraction of a
spherical planet of uniform density, one may treat the sphere as a point
mass.

Let’s show this is true when the point mass is on the surface of the
sphere. Assume the planet has radius a, put the point mass at the
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origin and make this the south pole of the sphere. Then

Fz = Gm

∫∫∫
R

δ cosφ sinφ dρ dφ dθ

= Gm

∫ 2π

0

∫ π/2

0

∫ 2a cosφ

0

δ cosφ sinφ dρ dφ dθ.

The inner integral is∫ 2a cosφ

0

δ cosφ sinφ dρ =

[
δ cosφ sinφρ

]2a cosφ
0

= 2aδ cos2 φ sinφ.

The middle integral is∫ π/2

0

2aδ cos2 φ sinφdφ =

[
− 2

3
aδ cos3 φ

]π/2
0

=
2

3
aδ.

The outer integral is∫ 2π

0

2

3
aδ dθ =

[
2

3
aδ

]2π
0

=
4π

3
aδ.

So the integral is

Gm
4π

3
aδ =

GmM

a2
,

since the mass of the planet is

M = δ
4πa3

3
.
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