25. Review

Double integrals Integrate function $f(x, y)$ over a region R :

$$
\iint_{R} f \mathrm{~d} A .
$$

Computes the volume of the graph of f lying over R.
Example 25.1. Evaluate

$$
\int_{0}^{1} \int_{0}^{x^{2}} \frac{x e^{y}}{1-y} \mathrm{~d} y \mathrm{~d} x
$$

We cannot caculate this directly.
First we figure out the region of integration. $0 \leq x \leq 1$. Given x, we have $0 \leq y \leq x^{2}$. So we have the region R between $x=0$ and $x=1$ under the graph of $y=x^{2}$. Then we switch the order of integration.

$$
\int_{0}^{1} \int_{0}^{x^{2}} \frac{x e^{y}}{1-y} \mathrm{~d} y \mathrm{~d} x=\iint_{R} \frac{x e^{y}}{1-y} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{x e^{y}}{1-y} \mathrm{~d} x \mathrm{~d} y
$$

The inner integral is

$$
\int_{\sqrt{y}}^{1} \frac{x e^{y}}{1-y} \mathrm{~d} x=\left[\frac{x^{2} e^{y}}{2(1-y)}\right]_{\sqrt{y}}^{1}=\frac{e^{y}(1-y)}{2(1-y)}=\frac{1}{2} e^{y} .
$$

So the outer integral is

$$
\int_{0}^{1} \frac{1}{2} e^{y} \mathrm{~d} x=\left[\frac{1}{2} e^{y}\right]_{0}^{1}=\frac{e-1}{2}
$$

We can use the double integral to calculate the mass, centre of mass and moment of inertia:

Example 25.2. A metal plate is in the shape of a circle of radius 20 cm . Its density in $\mathrm{g} / \mathrm{cm}^{2}$ at a distance of rcm from the centre of the circle is $10 r+3$.

Find the total mass as an integral.

$$
M=\iint_{R} \delta \mathrm{~d} A=\int_{0}^{2 \pi} \int_{0}^{20}(10 r+3) r \mathrm{~d} r \mathrm{~d} \theta
$$

Line integrals Integrate a vector field \vec{F} over an oriented curve C.

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

Represents the work done.

One can compute directly, by parametrising C. Let $C=C_{1}+C_{2}+C_{3}$ be the curve which starts at $(0,0)$ goes along the x-axis to $(1,0)$, goes around the unit circle until $(0,1)$ and comes back to the origin.

Figure 1. The curve C
Let $\vec{F}=-x^{3} \hat{\imath}+x^{2} y \hat{\jmath}$.

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r} .
$$

Note that

$$
\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r}=0
$$

as $\vec{F}=\overrightarrow{0}$ along the y-axis. Parametrise C_{1} by $x(t)=t, y(t)=0$.

$$
\vec{F}=\left\langle-t^{3}, 0\right\rangle \quad \text { and } \quad \mathrm{d} \vec{r}=\langle 1,0\rangle \mathrm{d} t .
$$

So

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{1}\left\langle-t^{3}, 0\right\rangle \cdot\langle 1,0\rangle \mathrm{d} t=\int_{0}^{1}-t^{3} \mathrm{~d} t=\left[-\frac{1}{4} t^{4}\right]_{0}^{1}=-\frac{1}{4}
$$

Parametrise C_{2} by $x(t)=\cos t, y(t)=\sin t$.

$$
\vec{F}=\left\langle-\cos ^{3} t, \cos ^{2} t \sin t\right\rangle \quad \text { and } \quad \mathrm{d} \vec{r}=\langle-\sin t, \cos t\rangle \mathrm{d} t .
$$

So

$$
\begin{aligned}
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r} & =\int_{0}^{\pi / 2}\left\langle-\cos ^{3} t, \cos ^{2} t \sin t\right\rangle \cdot\langle-\sin t, \cos t\rangle \mathrm{d} t \\
& =\int_{0}^{\pi / 2} 2 \cos ^{3} t \sin t \mathrm{~d} t \\
& =\left[-\cos ^{4} t / 2\right]_{0}^{\pi / 2}=1 / 2
\end{aligned}
$$

In total we get $1 / 4$. We can also use Green's theorem:

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r} & =\iint_{R} \operatorname{curl} \vec{F} \mathrm{~d} A \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \cos \theta \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

The inner integral is

$$
\int_{0}^{1} r^{3} \cos \theta \mathrm{~d} r=\left[\frac{1}{4} r^{4} \cos \theta\right]_{0}^{1}=\frac{1}{4} \cos \theta .
$$

So the outer integral is

$$
\int_{0}^{\pi / 2} \frac{1}{4} \cos \theta \mathrm{~d} \theta=\left[\frac{1}{4} \sin \theta\right]_{0}^{\pi / 2}=\frac{1}{4}
$$

What about the same question, but now let us compute the flux.

$$
\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\int_{C_{1}} \vec{F} \cdot \hat{n} \mathrm{~d} s+\int_{C_{2}} \vec{F} \cdot \hat{n} \mathrm{~d} s+\int_{C_{3}} \vec{F} \cdot \hat{n} \mathrm{~d} s
$$

Once again the flux across C_{3} is zero. Along C_{1} the normal vector is $-\hat{\jmath}$. So the flux is zero, since \vec{F} is parallel to $\hat{\imath}$ along the x-axis. Along C_{2}, we have

$$
\hat{n} \mathrm{~d} s=\langle\mathrm{d} y,-\mathrm{d} x\rangle .
$$

So

$$
\begin{aligned}
\int_{C_{1}} \vec{F} \cdot \hat{n} \mathrm{~d} s & =\int_{0}^{\pi / 2}\left\langle-\cos ^{3} t, \cos ^{2} t \sin t\right\rangle \cdot\langle\cos t, \sin t\rangle \mathrm{d} t \\
& =\int_{0}^{\pi / 2}-\cos ^{4} t+\cos ^{2} t \sin ^{2} t \mathrm{~d} t \\
& =\frac{-\pi}{8}
\end{aligned}
$$

Or we could apply the normal form of Green's theorem:

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s & =\iint_{R} \operatorname{div} \vec{F} \mathrm{~d} A \\
& =\iint_{R}-2 x^{2} \mathrm{~d} A \\
& =\int_{0}^{\pi / 2} \int_{0}^{1}-2 r^{3} \cos ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

The inner integral is

$$
\int_{0}^{1}-2 r^{3} \cos \theta \mathrm{~d} r=\left[-\frac{1}{2} r^{4} \cos ^{2} \theta\right]_{0}^{1}=-\frac{1}{2} \cos ^{2} \theta
$$

So the outer integral is

$$
\int_{0}^{\pi / 2}-\frac{1}{2} \cos ^{2} \theta \mathrm{~d} \theta=\left[-\frac{t}{4}-\frac{1}{8} \sin (2 \theta)\right]_{0}^{\pi / 2}=-\frac{1}{8} \pi
$$

Let

$$
\vec{F}=\left(3 x^{2}-2 y \sin x \cos x\right) \hat{\imath}+\left(a \cos ^{2} x+1\right) \hat{\jmath} .
$$

For which values of a is \vec{F} a gradient vector field?

$$
M_{y}=-2 \sin x \quad \text { and } \quad N_{x}=-2 a \cos x \sin x
$$

These are equal if and only if $a=1$. For this value of a, what is the integral over the curve C,

$$
x(t)=t^{2} \quad \text { and } \quad y(t)=t^{3}-1
$$

$0 \leq t \leq 1 ?$
Find a potential function $f(x, y)$. We want

$$
f_{x}=3 x^{2}-2 y \sin x \cos x \quad \text { and } \quad f_{y}=\cos ^{2} x+1
$$

Integrate the first equation with respect to x,

$$
f(x, y)=x^{3}-y \cos ^{2} x+g(y)
$$

Use the second equation to determine $g(y)$,

$$
-\cos ^{2} x+\frac{d g}{d y}=\cos ^{2} x+1 \quad \text { so that } \quad \frac{d g}{d y}=1
$$

Hence $g(y)=y+c$. So

$$
f(x, y)=x^{3}-y \cos ^{2} x+y
$$

will do.

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=f(1,1)-f(0,0)=1
$$

