25. REVIEW

Double integrals Integrate function f(x,y) over a region R:

//RfdA.

Computes the volume of the graph of f lying over R.
Example 25.1. Evaluate

We cannot caculate this directly.

First we figure out the region of integration. 0 < x < 1. Given z, we
have 0 < y < 22. So we have the region R between z = 0 and x = 1
under the graph of y = 2. Then we switch the order of integration.
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We can use the double integral to calculate the mass, centre of mass
and moment of inertia:

Example 25.2. A metal plate is in the shape of a circle of radius
20cm. Its density in g/cm? at a distance of rem from the centre of the
circle s 10r + 3.

Find the total mass as an integral.
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Line integrals Integrate a vector field F over an oriented curve C.
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Represents the work done.



One can compute directly, by parametrising C. Let C' = C1+Cy+Cs
be the curve which starts at (0,0) goes along the z-axis to (1,0), goes
around the unit circle until (0, 1) and comes back to the origin.
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FiGUuRE 1. The curve C

Let F' = —a3i + 2%yj.

Note that

as F = 0 along the y-axis. Parametrise C; by z(t) = t, y(t) = 0.
F=(—t0) and df=(1,0)dt.
So
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Parametrise Cy by z(t) = cost, y(t) = sint.
F = (—cost, cos® t sint) and dr = (—sint, cost) dt.

So
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In total we get 1/4. We can also use Green’s theorem:
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The inner integral is

So the outer integral is
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What about the same question, but now let us compute the flux.
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Once again the flux across C is zero. Along C; the normal vector is
—J. So the flux is zero, since F is parallel to 7 along the z-axis. Along
Cs, we have

nds = (dy, —dz).
So
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Or we could apply the normal form of Green’s theorem:
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So the outer integral is
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Let .
F = (32° — 2ysinx cos x)i + (acos® x + 1))
For which values of a is F a gradient vector field?
M, = —2sinx and N, = —2acoszsinz.

These are equal if and only if a = 1. For this value of a, what is the
integral over the curve C,

x(t) =t* and  y(t) =1t —1,
0<t<1?
Find a potential function f(z,y). We want

fo = 32% — 2ysinz cosx and fy = cos? x + 1.
Integrate the first equation with respect to z,
fla,y) =2 —ycos® z + g(y).
Use the second equation to determine g(y),
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Hence g(y) =y +c. So

f(z,y) =2° —ycos’x + v,
will do.

—

/F-dF:/Vf-dF:f(l,l)—f(0,0):1.
C C



	25. Review

