20. LINE INTEGRALS

Let's look more at line integrals. Let's suppose we want to compute the line integral of $\vec{F}=y \hat{\imath}+x \hat{\jmath}$ around the curve C which is the sector of the unit circle whose angle is $\pi / 4$, starting and ending at the origin. We break C into three curves,

$$
C=C_{1}+C_{2}+C_{3} .
$$

The line C_{1} from $(0,0)$ to $(1,0)$, the arc C_{2} of the unit circle starting at $(1,0)$ and ending at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and the line from this point back to the origin C_{3}.

Figure 1. The curve C
We have

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r} .
$$

We parametrise each curve separately.
The curve C_{1} : For the x-axis, $x(t)=t, y(t)=0,0 \leq t \leq 1$. In this case

$$
\vec{F}=\langle y, x\rangle=\langle 0, t\rangle \quad \text { and } \quad \mathrm{d} \vec{r}=\langle 1,0\rangle \mathrm{d} t .
$$

So

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{1}\langle 0, t\rangle \cdot\langle 1,0\rangle \mathrm{d} t=\int_{0}^{1} 0 \mathrm{~d} t=0
$$

In fact there are two other ways to see that we must get zero. We could take the arclength parametrisation. In this case $\hat{T}=\hat{\imath}$ and $\vec{F}=t \hat{\jmath}$, so that $\vec{F} \cdot \hat{T}=0$. Or observe that the work done is zero, since the force is orthogonal to the velocity vector.

The curve C_{2} : For the arc of the circle, $x(t)=\cos t, y(t)=\sin t$, $0 \leq t \leq \pi / 4$. In this case

$$
\vec{F}=\langle y, x\rangle=\langle\sin t, \cos t\rangle \quad \text { and } \quad \mathrm{d} \vec{r}=\langle-\sin t, \cos t\rangle \mathrm{d} t .
$$

So

$$
\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{0}^{\pi / 4}\langle\sin t, \cos t\rangle \cdot\langle-\sin t, \cos t\rangle \mathrm{d} t=\int_{0}^{\pi / 4} \cos (2 t) \mathrm{d} t=\left[\frac{\sin (2 t)}{2}\right]_{0}^{\pi / 4}=\frac{1}{2}
$$

The curve C_{3} : For the straight line segment starting at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and ending at the origin, we have $x(t)=t, y(t)=t, 0 \leq t \leq 1 / \sqrt{2}$.

$$
\vec{F}=\langle y, x\rangle=\langle t, t\rangle \quad \text { and } \quad \mathrm{d} \vec{r}=\langle 1,1\rangle \mathrm{d} t
$$

So,

$$
\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{1 / \sqrt{2}}^{0}\langle t, t\rangle \cdot\langle 1,1\rangle \mathrm{d} t=\int_{1 / \sqrt{2}}^{0} 2 t \mathrm{~d} t=\left[t^{2}\right]_{1 / \sqrt{2}}^{0}=-\frac{1}{2} .
$$

Note that the limits start at $1 / \sqrt{2}$ and end at 0 .
Putting all of this together, we get

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}+\int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{r}=0+1 / 2-1 / 2=0
$$

We say that \vec{F} is a gradient field if $\vec{F}=\nabla f$, for some scalar function f.

Theorem 20.1 (Fundamental Theorem of Calculus for line integrals). If $\vec{F}=\nabla f$ is a gradient vector field then

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=f\left(P_{1}\right)-f\left(P_{0}\right)
$$

where C is a path from P_{0} to P_{1}.
For example, suppose we take $f(x, y)=x y$. Then

$$
\nabla f=y \hat{\imath}+x \hat{\jmath}=\vec{F},
$$

the vector field above. Using (20.1), we see that

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=f(0,0)-f(0,0)=0
$$

On the other hand,

$$
\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}=f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)-f(1,0)=\frac{1}{2} .
$$

In the language of differentials, one can restate (20.1) as

$$
\int_{C} f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y=\int_{C} \mathrm{~d} f=f\left(P_{1}\right)-f\left(P_{0}\right)
$$

Proof of 20.1.

$$
\begin{aligned}
\int_{C} \nabla f \cdot \mathrm{~d} \vec{r} & =\int_{t_{0}}^{t_{1}}\left(f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}\right) \mathrm{d} t \\
& =\int_{t_{0}}^{t_{1}} \frac{d}{d t}(f(x(t), y(t))) \mathrm{d} t \\
& =[f(x(t), y(t))]_{t_{0}}^{t_{1}} \\
& =f\left(P_{1}\right)-f\left(P_{0}\right) .
\end{aligned}
$$

(20.1) has some very interesting consequences:

Path independence: If C_{1} and C_{2} are two paths starting and ending at the same point, then

$$
\int_{C_{1}} \nabla f \cdot \mathrm{~d} \vec{r}=\int_{C_{2}} \nabla f \cdot \mathrm{~d} \vec{r} .
$$

In other words, the line integral

$$
\int_{C} \nabla f \cdot \mathrm{~d} \vec{r},
$$

depends only on the endpoints, not on the trajectory.
Gradient fields are conservative: If C is a closed loop, then

$$
\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=0
$$

We already saw that if C is a circle of radius a centred at the circle and $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$, then

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=2 \pi a^{2} \neq 0
$$

So the vector field $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$ is not conservative. It follows that $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$ is not the gradient of any scalar field.

If $\vec{F}=\nabla f$ is a gradient field, and \vec{F} is the force, then f has an interesting physical interpretation, it is called the potential. In this case the work done is nothing more than the change in the potential. For example, if \vec{F} is the force due to gravity, f is inversely proportional to the height. If \vec{F} is the electric field, f is the voltage. (Note the annoying fact that mathematicians and physicists use a different sign convention; for physicists $\vec{F}=-\nabla f$).

To summarise, we have four equivalent properties:
(1) \vec{F} is conservative, that is, $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=0$ for any closed loop.
(2) $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ is path independent.
(3) $\vec{F}=\nabla f$ is a gradient vector field.
(4) $M \mathrm{~d} x+N \mathrm{~d} y$ is an exact differential, equal to $\mathrm{d} f$.
(1) and (2) are equivalent by considering the closed loop $C=C_{1}-C_{2}$. (3) implies (2) by (20.1). We will see (2) implies (3) in the next lecture.
(3) and (4) are the same statement, using different notation.

