20. LINE INTEGRALS

Let’s look more at line integrals. Let’s suppose we want to compute
the line integral of F = yi + xj around the curve C' which is the sector
of the unit circle whose angle is 7/4, starting and ending at the origin.
We break C' into three curves,

0201+02+Cg.

The line € from (0,0) to (1,0), the arc Cy of the unit circle starting
at (1,0) and ending at (\%, \%) and the line from this point back to
the origin Cj.
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FiGure 1. The curve C
We have

/f«w_/ﬁ«w5/ﬁ«Wﬁ/ﬁdﬁ
C Cq Co C-

We parametrise each curve separately.
The curve Cy: For the z-axis, z(t) = ¢, y(t) = 0,0 < ¢ < 1. In this
case

—

F=(y,x)=(0,1) and dr = (1,0) dt.
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In fact there are two other ways to see that we must get zero. We could
take the arclength parametrisation. In this case T =7and F = tj, so
that F - T = 0. Or observe that the work done is zero, since the force
is orthogonal to the velocity vector.

The curve Cy: For the arc of the circle, z(t) = cost, y(t) = sint,
0 <t < m/4. In this case

So

F = (y,z) = (sint, cost) and  d7 = (—sint,cost) dt.
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So

sin(2t)

. w/4 /4
/ F-dF:/ (sint,cost)-(—sint,cost) dt :/ cos(2t) dt = [
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The curve Cj5: For the straight line segment starting at (\/LE’
and ending at the origin, we have z(t) = ¢, y(t) =, 0 <t < 1/V/2.

F={(yz)=(tt) and dF=(1,1)dt

1
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So,

. 0 0 0 1
/F-dF:/ <t,t>-<1,1)dt:/ 2t dt = {ﬂ} = —=.
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Note that the limits start at 1/ V2 and end at 0.
Putting all of this together, we get

/F-dfz/ﬁ-df+/ﬁ-dF+/ﬁ-dF:O+1/2—1/2:0.
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We say that Fisa gradient field if F=vV f, for some scalar function
I

Theorem 20.1 (Fundamental Theorem of Calculus for line integrals).
]fﬁ = V[ is a gradient vector field then

[ Fear= [vi-ar= s - ()
c c
where C' is a path from Py to P;.

For example, suppose we take f(z,y) = xy. Then

Vf=yitaz)=F
the vector field above. Using (20.1)), we see that
/ﬁ-dF:f(0,0) — £(0,0) = 0.
c

On the other hand,

- 1 1 1
F-df = f(—=,—=) — f(1,0) = =.
/02 V2 V2 2
In the language of differentials, one can restate (20.1)) as

/fx dz + f, dy = /df — F(P) — f(Py).
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Proof of (201).

. f dx dy
/CVf'dT‘—/to (fxa—i-fyg) dt
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= f(P1) = f(Po). U

(20.1)) has some very interesting consequences:
Path independence: If C} and C5 are two paths starting and ending
at the same point, then

/Vf-dF:/Vf~dF.
01 C'2

In other words, the line integral

/Vf-df,
c

depends only on the endpoints, not on the trajectory.
Gradient fields are conservative: If C' is a closed loop, then

/Vf-dF:O.
C

We already saw that if C' is a circle of radius a centred at the circle
and F' = —yi + x), then

/ﬁ-dr_":27ra27é().
C

So the vector field F = —y? + x] is not conservative. It follows that
F= —yi + x) is not the gradient of any scalar field.

IfF =V f is a gradient field, and F is the force, then f has an
interesting physical interpretation, it is called the potential. In this
case the work done is nothing more than the change in the potential.
For example, if F is the force due to gravity, f is inversely proportional
to the height. If F is the electric field, f is the voltage. (Note the
annoying fact that mathematicians and physicists use a different sign
convention; for physicists F=-V f)-

To summarise, we have four equivalent properties:

(1) F is conservative, that is, fcﬁ -dr = 0 for any closed loop.

(2) fcﬁ -dr is path independent.
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(3) F =V is a gradient vector field.
(4) M dz + N dy is an exact differential, equal to df.

(1) and (2) are equivalent by considering the closed loop C' = C; —C,.
(3) implies (2) by (20.1)). We will see (2) implies (3) in the next lecture.
(3) and (4) are the same statement, using different notation.
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