17. Review

Linear approximation:

 $\Delta f \approx f_x \Delta x + f_y \Delta y.$

Tangent plane: to z = f(x, y) at (x_0, y_0, z_0)

$$z - z_0 = f_x(x - x_0) + f_y(y - y_0).$$

Let w = f(x, y, z). Chain rule:

$$\mathrm{d}w = f_x \,\mathrm{d}x + f_y \,\mathrm{d}y + f_z \,\mathrm{d}z.$$

So

$$\frac{dw}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$$

We can encode this efficiently using the gradient:

$$\nabla f = \langle f_x, f_y, f_z \rangle = f_x \hat{\imath} + f_y \hat{\jmath} + f_z \hat{k}$$

Then

$$\frac{dw}{dt} = \nabla f \cdot \vec{v}(t).$$

The most important property of the gradient is that it is normal to the level curves, or to the level surfaces.

Example 17.1. What is the tangent plane to the ellipsoid

$$3x^2 + 5y^2 + 3z^2 = 11,$$

at the point $(x_0, y_0, z_0) = (1, 1, 1)$?

Well, this is a level surface of the function $f(x, y, z) = 3x^2 + 5y^2 + 3z^2$.

$$\nabla f = \langle 6x, 10y, 6z \rangle$$

At the point (1, 1, 1), we have

$$\nabla f = \langle 6, 10, 6 \rangle.$$

So $\vec{n} = \langle 3, 5, 3 \rangle$ is a normal vector the tangent plane. So the equation of the tangent plane is

 $\langle x-1, y-1, z-1 \rangle \cdot \langle 3, 5, 3 \rangle = 0$ so that 3(x-1)+5(y-1)+3(z-1) = 0. Rearranging, we get 3x + 5y + 3z = 11.

Directional derivative: Let w = f(x, y) be a function of two variables. Let $\hat{u} = \langle a, b \rangle$ be a direction in the plane. The directional derivative, in the direction of \hat{u} ,

$$\frac{dw}{ds}\Big|_{\hat{u}} = \lim_{s \to 0} \frac{f(x_0 + sa, y_0 + sb) - f(x_0, y_0)}{s}.$$

If $\hat{u} = \hat{i}$, we get $f_x(x_0, y_0)$ and if $\hat{u} = \hat{j}$, we get $f_y(x_0, y_0)$.

To compute, use the gradient:

$$\left. \frac{dw}{ds} \right|_{\hat{u}} = \nabla f \cdot \hat{u}.$$

So the gradient points in the direction of maximum increase of w and the magnitude of the gradient is the rate of change in this direction. The direction of maximum decrease of f is given by $-\nabla f$.

Example 17.2. What is the closest point to p = (1, -1) on the curve $x^3 - x + 2y^2 = 1.9$?

At (1, -1) we have f(1, -1) = 2, so we want $\Delta f = -0.1$. From p we should go in the direction to decrease f the most:

$$\nabla f = \langle 3x^2 - 1, 4y \rangle$$
 so that $\nabla f_{(1,-1)} = \langle 2, -4 \rangle.$

We want go in the direction of $-\nabla f_{(1,-1)} = \langle -2, 4 \rangle$. The magnitude is $2\sqrt{5}$, so want to go in the direction

$$\hat{u} = \frac{1}{\sqrt{5}} \langle -1, 2 \rangle.$$

If we go in this direction f decreases by $2\sqrt{5}$. So we want to go a distance of

$$\frac{1}{20\sqrt{5}}$$

That is we want a displacement of

$$\frac{1}{100}\langle -1,2\rangle.$$

So we want the point

$$\langle 1, -1 \rangle + \frac{1}{100} \langle -1, 2 \rangle = \langle 0.99, -0.98 \rangle$$

To find the maximum and the minimum of a function w = f(x, y), first find the critical points, the solutions to $f_x = 0$ and $f_y = 0$. To analyse the type of the critical points (local minimum, local maximum or saddle point), use the 2nd derivative test. Let $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$ and $C = f_{yy}(x_0, y_0)$. If $AC - B^2 > 0$ we have a maximum or minimum. A > 0 is a minimum and A < 0 is a maximum. If $AC - B^2 < 0$ we have a saddle point.

Next check what happens at the boundary, including infinity.

Example 17.3.

maximise and minimise x+y+z subject to $x^2y^3z^5 = 2^23^35^5$, where x, y and $z \ge 0$. Use equation to eliminate x,

$$x = \sqrt{\frac{2^2 3^3 5^5}{y^3 z^5}}.$$

So we want to maximise

$$h(y,z) = \sqrt{\frac{2^2 3^3 5^5}{y^3 z^5}} + y + z.$$

Find the critical points:

$$h_y = -\frac{3}{2}\sqrt{\frac{2^2 3^3 5^5}{y^5 z^5}} + 1$$
 and $h_z = -\frac{5}{2}\sqrt{\frac{2^2 3^3 5^5}{y^3 z^7}} + 1.$

So we want

$$0 = -\frac{3}{2}\sqrt{\frac{2^2 3^3 5^5}{y^5 z^5}} + 1 \quad \text{and} \quad 0 = -\frac{5}{2}\sqrt{\frac{2^2 3^3 5^5}{y^3 z^7}} + 1.$$

Rearranging, we get

$$\sqrt{\frac{2^2 3^3 5^5}{y^5 z^5}} = \frac{2}{3}$$
 and $\sqrt{\frac{2^2 3^3 5^5}{y^3 z^7}} = \frac{2}{5}$.

Squaring, we get

$$\frac{2^2 3^3 5^5}{y^5 z^5} = \frac{2^2}{3^2}$$
 and $\frac{2^2 3^3 5^5}{y^5 z^7} = \frac{2^2}{5^2}$.

Taking the reciprocal

$$\frac{y^5 z^5}{2^2 3^3 5^5} = \frac{3^2}{2^2}$$
 and $\frac{y^5 z^7}{2^2 3^3 5^5} = \frac{5^2}{2^2}$

Simplifying

$$y^5 z^5 = 3^5 5^5$$
 and $y^3 z^7 = 3^3 5^7$

We guess y = 3 and z = 5. This works and it is clear the solution is unique. x = 2 is the other value. Let's try the 2nd derivative test.

$$h_{yy} = \frac{15}{4} \sqrt{\frac{2^2 3^3 5^5}{y^7 z^5}} \qquad h_{yz} = \frac{15}{4} \sqrt{\frac{2^2 3^3 5^5}{y^5 z^7}} \qquad \text{and} \qquad h_{zz} = \frac{35}{4} \sqrt{\frac{2^2 3^3 5^5}{y^3 z^9}}$$

We have

$$A = \frac{15}{4}\sqrt{\frac{2^2 3^3 5^5}{3^7 5^5}} \qquad B = \frac{15}{4}\sqrt{\frac{2^2 3^3 5^5}{3^5 5^7}} \qquad \text{and} \qquad C = \frac{35}{4}\sqrt{\frac{2^2 3^3 5^5}{3^3 5^9}}.$$

We have $AC - B^2 > 0$. A > 0, so have a local minimum. There are no other critical points, so this is a global minimum. Minimum value is 10.

At the boundary, one of the variables goes to ∞ and the sum goes to ∞ . No maximum.

Let's use Lagrange multipliers insead. We add a variable λ and solve

$$f_x = \lambda g_x$$

$$f_y = \lambda g_y$$

$$f_z = \lambda g_z$$

$$g = c.$$

In our case f(x,y,z)=x+y+z and $g(x,y,z)=x^2y^3z^5.$ We get $1=\lambda 2xy^3z^5$

$$\begin{split} 1 &= \lambda 3 x^2 y^2 z^5 \\ 1 &= \lambda 5 x^2 y^3 z^4 \\ x^2 y^3 z^5 &= 2^2 3^3 5^5. \end{split}$$

Multiply the first three equations by x, y and z:

$$x = \lambda 2x^2 y^3 z^5$$
$$y = \lambda 3x^2 y^3 z^5$$
$$z = \lambda 5x^2 y^3 z^5.$$

So 3x = 2y, 5x = 2z. Multiply constraint by 2^3 , $3^3x^5z^5 = 2^53^35^5$.

Cancelling, we get

 $x^5 z^5 = 2^5 5^5.$

Multiply both sides by 2^5 ,

 $2^5 x^5 z^5 = 2^{10} 5^5.$

We get

$$5^5 x^{10} = 2^{10} 5^5.$$

Hence x = 2. Thus y = 3 and z = 5.