
16. Polar coordinates and applications

Let’s suppose that either the integrand or the region of integration
comes out simpler in polar coordinates (x = r cos θ and y = r sin θ).
Let suppose we have a small change in r and θ. The small change ∆r
in r gives us two concentric circles and the small change ∆θ in θ gives
us an angular wedge.

If the changes are small, we almost get a rectangle with sides ∆r and
r∆θ,

∆A ≈ r∆r∆θ.

Figure 1. Small changes in r and θ

Taking the limit as ∆r and ∆θ go to zero, we get

dA = rdrdθ.

Example 16.1. Compute the volume of f(x, y) = x+3y over the circle
x2 + y2 ≤ 1.

∫∫
R

(x+ 3y) dA =

∫ 2π

0

∫ 1

0

r2(cos θ + 3 sin θ) drdθ.

The inner integral is∫ 1

0

r2(cos θ + 3 sin θ) dr =

[
r3

3
(cos θ + 3 sin θ)

]1
0

=
1

3
cos θ + sin θ.

The outer integal is∫ 2π

0

1

3
cos θ + sin θ dθ =

[
1

3
sin θ − cos θ

]2π
0

= 0.

Example 16.2. What is ∫ ∞
−∞

e−x
2

dx?

1



Let

I =

∫ ∞
−∞

e−x
2

dx.

Then

I2 =

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2 dxdy

=

∫∫
R2

e−x
2−y2 dA

=

∫ 2π

0

∫ ∞
0

re−r
2

drdθ.

The inner integral is∫ ∞
0

re−r
2

dr =

[
− 1

2
e−r

2

]∞
0

=
1

2
.

The outer integral is ∫ 2π

0

1

2
dθ =

[
θ

2

]2π
0

= π.

So I =
√
π.

We can use double integrals to compute some interesting quantities.
If we want to compute the area of a region, then just integrate 1,∫∫

R

1 dA.

The point is that the volume under the graph of a function of constant
height is the area of the base times the height.

If we have a material whose mass density,

δ(x, y) = lim
∆m

∆A
,

is a function of the position, then the total mass is

M =

∫∫
R

δ dA.

Recall that the average of a function f(x, y) over the region R is

f̄ =
1

A

∫∫
R

f dA,
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where A is the area of R. The centre of mass or centroid (x̄, ȳ) of a
plate with density δ is given by

x̄ =
1

M

∫∫
R

xδ dA and ȳ =
1

M

∫∫
R

yδ dA

The moment of inertia is a measure of how hard it is to rotate an
object (in just the same way that the mass measures how hard it is
to move an object). Suppose we have a mass m rotating in a circle of
radius r with angular speed

ω =
dθ

dt
.

The velocity is v = rω. So the kinetic engergy is

1

2
mv2 =

1

2
mr2ω2.

The moment of inertia is

I0 = mr2.

For a solid with density δ, the moment of inertia about the origin is

I0 =

∫∫
R

r2δ dA.

The moment of inertia about the x-axis is

I0 =

∫∫
R

y2δ dA.

Here y2 is the square of the distance to the x-axis. In fact, one can
think of the moment of inertia about the origin as the moment of
inertia about the z-axis in R3. For a point in the plane, the square of
the distance to the z-axis is r2.

Example 16.3. What is the moment of inertia of a disc of radius a
about its centre?

Here we assume that the density is one. Put the disc in the plane
centred at the origin. Let R be the circle x2 + y2 ≤ a2. The moment
of inertia is ∫∫

R

r2 dA =

∫ 2π

0

∫ a

0

r3 drdθ.

The inner integral is ∫ a

0

r3 dr =

[
r4

4

]a
0

=
a4

4
.
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The outer integral is∫ 2π

0

a4

4
dθ =

[
a4

4
θ

]2π
0

=
πa4

2
.

Now what happens if we try to compute the moment of inertia about
a point of the circumference? Put the circle so its centre is at (a, 0),
so that the origin is the point on the circumference. Clearly we would
like to use polar coordinates again.

The equation of the circle in Cartesian coordinates is

(x− a)2 + y2 = a2.

Expanding we get
x2 + y2 = 2ax.

So
r2 = 2ar cos θ,

that is
r = 2a cos θ.

(a, 0)(0, 0)

Figure 2. Limits of integration

The moment of inertia about the origin is therefore

I0 =

∫∫
R

r2 dA =

∫ π

0

∫ 2a cos θ

0

r3 drdθ.

The inner integral is∫ 2a cos θ

0

r3 dr =

[
1

4
r4
]2a cos θ
0

= 4a4 cos4 θ.

The outer integral is ∫ π

0

4a4 cos4 θ dθ =
3

2
πa4.
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