16. Polar coordinates and applications

Let's suppose that either the integrand or the region of integration comes out simpler in polar coordinates $(x=r \cos \theta$ and $y=r \sin \theta)$. Let suppose we have a small change in r and θ. The small change Δr in r gives us two concentric circles and the small change $\Delta \theta$ in θ gives us an angular wedge.

If the changes are small, we almost get a rectangle with sides Δr and $r \Delta \theta$,

$$
\Delta A \approx r \Delta r \Delta \theta
$$

Figure 1. Small changes in r and θ
Taking the limit as Δr and $\Delta \theta$ go to zero, we get

$$
\mathrm{d} A=r \mathrm{~d} r \mathrm{~d} \theta
$$

Example 16.1. Compute the volume of $f(x, y)=x+3 y$ over the circle $x^{2}+y^{2} \leq 1$.

$$
\iint_{R}(x+3 y) \mathrm{d} A=\int_{0}^{2 \pi} \int_{0}^{1} r^{2}(\cos \theta+3 \sin \theta) \mathrm{d} r \mathrm{~d} \theta
$$

The inner integral is

$$
\int_{0}^{1} r^{2}(\cos \theta+3 \sin \theta) \mathrm{d} r=\left[\frac{r^{3}}{3}(\cos \theta+3 \sin \theta)\right]_{0}^{1}=\frac{1}{3} \cos \theta+\sin \theta .
$$

The outer integal is

$$
\int_{0}^{2 \pi} \frac{1}{3} \cos \theta+\sin \theta \mathrm{d} \theta=\left[\frac{1}{3} \sin \theta-\cos \theta\right]_{0}^{2 \pi}=0
$$

Example 16.2. What is

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x ?
$$

Let

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x
$$

Then

$$
\begin{aligned}
I^{2} & =\left(\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} \mathrm{~d} y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y \\
& =\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} \mathrm{~d} A \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r e^{-r^{2}} \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

The inner integral is

$$
\int_{0}^{\infty} r e^{-r^{2}} \mathrm{~d} r=\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{\infty}=\frac{1}{2}
$$

The outer integral is

$$
\int_{0}^{2 \pi} \frac{1}{2} \mathrm{~d} \theta=\left[\frac{\theta}{2}\right]_{0}^{2 \pi}=\pi
$$

So $I=\sqrt{\pi}$.
We can use double integrals to compute some interesting quantities. If we want to compute the area of a region, then just integrate 1 ,

$$
\iint_{R} 1 \mathrm{~d} A .
$$

The point is that the volume under the graph of a function of constant height is the area of the base times the height.

If we have a material whose mass density,

$$
\delta(x, y)=\lim \frac{\Delta m}{\Delta A}
$$

is a function of the position, then the total mass is

$$
M=\iint_{R} \delta \mathrm{~d} A
$$

Recall that the average of a function $f(x, y)$ over the region R is

$$
\bar{f}=\frac{1}{A} \iint_{2} f \mathrm{~d} A
$$

where A is the area of R. The centre of mass or centroid (\bar{x}, \bar{y}) of a plate with density δ is given by

$$
\bar{x}=\frac{1}{M} \iint_{R} x \delta \mathrm{~d} A \quad \text { and } \quad \bar{y}=\frac{1}{M} \iint_{R} y \delta \mathrm{~d} A
$$

The moment of inertia is a measure of how hard it is to rotate an object (in just the same way that the mass measures how hard it is to move an object). Suppose we have a mass m rotating in a circle of radius r with angular speed

$$
\omega=\frac{d \theta}{d t} .
$$

The velocity is $v=r \omega$. So the kinetic engergy is

$$
\frac{1}{2} m v^{2}=\frac{1}{2} m r^{2} \omega^{2} .
$$

The moment of inertia is

$$
I_{0}=m r^{2}
$$

For a solid with density δ, the moment of inertia about the origin is

$$
I_{0}=\iint_{R} r^{2} \delta \mathrm{~d} A .
$$

The moment of inertia about the x-axis is

$$
I_{0}=\iint_{R} y^{2} \delta \mathrm{~d} A .
$$

Here y^{2} is the square of the distance to the x-axis. In fact, one can think of the moment of inertia about the origin as the moment of inertia about the z-axis in \mathbb{R}^{3}. For a point in the plane, the square of the distance to the z-axis is r^{2}.

Example 16.3. What is the moment of inertia of a disc of radius a about its centre?

Here we assume that the density is one. Put the disc in the plane centred at the origin. Let R be the circle $x^{2}+y^{2} \leq a^{2}$. The moment of inertia is

$$
\iint_{R} r^{2} \mathrm{~d} A=\int_{0}^{2 \pi} \int_{0}^{a} r^{3} \mathrm{~d} r \mathrm{~d} \theta
$$

The inner integral is

$$
\int_{0}^{a} r^{3} \mathrm{~d} r=\left[\frac{r^{4}}{4}\right]_{0}^{a}=\frac{a^{4}}{4}
$$

The outer integral is

$$
\int_{0}^{2 \pi} \frac{a^{4}}{4} \mathrm{~d} \theta=\left[\frac{a^{4}}{4} \theta\right]_{0}^{2 \pi}=\frac{\pi a^{4}}{2}
$$

Now what happens if we try to compute the moment of inertia about a point of the circumference? Put the circle so its centre is at $(a, 0)$, so that the origin is the point on the circumference. Clearly we would like to use polar coordinates again.

The equation of the circle in Cartesian coordinates is

$$
(x-a)^{2}+y^{2}=a^{2} .
$$

Expanding we get

$$
x^{2}+y^{2}=2 a x .
$$

So

$$
r^{2}=2 a r \cos \theta
$$

that is

$$
r=2 a \cos \theta
$$

Figure 2. Limits of integration
The moment of inertia about the origin is therefore

$$
I_{0}=\iint_{R} r^{2} \mathrm{~d} A=\int_{0}^{\pi} \int_{0}^{2 a \cos \theta} r^{3} \mathrm{~d} r \mathrm{~d} \theta
$$

The inner integral is

$$
\int_{0}^{2 a \cos \theta} r^{3} \mathrm{~d} r=\left[\frac{1}{4} r^{4}\right]_{0}^{2 a \cos \theta}=4 a^{4} \cos ^{4} \theta
$$

The outer integral is

$$
\int_{0}^{\pi} 4 a^{4} \cos ^{4} \theta \mathrm{~d} \theta=\frac{3}{2} \pi a^{4}
$$

