
15. Partial differential equations; double integrals

15.1. Partial differential equations. Recall that many functions of
one variable are characterised by a(n ordinary) differential equation.

dy

dx
= ky.

The solutions to this ODE are

y(x) = aekx,

where a is a constant.
A partial differential equation is an equation satisfied by a function of

several variables; a preposterously large number of problems in nature
are described by PDEs.

Heat equation: The heat in a sheet of metal is described by
w(x, y, t) where

∂w

∂t
= k

(
∂2w

∂x2
+

∂2w

∂y2

)
.

The term on the right has special significance:
Laplace equation: Let u(x, y) be a function in the plane.

∂2u

∂x2
+

∂2u

∂y2
= 0.

This is a solution to the heat equation which is static in time.
Wave equation: Let w(x, t) represent the displacement of a guitar

string, as a function of time:

∂2w

∂t2
= c2

∂2w

∂x2
.

For example, consider w(x, t) = sin(ωt + kx), where ω and k are
constants.

Question 15.1. For which values of ω and k is w a solution of the
wave equation?

We plug in the formula for w and see what we get:

∂w

∂t
= ω cos(ωt + kx),

so that
∂2w

∂t2
= −ω2 sin(ωt + kx).

On the other hand,
∂w

∂x
= k cos(ωt + kx),
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so that
∂2w

∂x2
= −k2 sin(ωt + kx).

So, if ω2 = c2k2, we have a solution to the wave equation.

15.2. Double integrals. Suppose we have a region R in the plane and
a function f defined on R. The double integral is the volume between
the graph of f and the region R in the xy-plane:∫∫

R

f(x, y) dA.

As usual this is the signed volume. To compute this integral, imagine
cutting the region R into small pieces Ri. Pick a point (xi, yi) belonging
to each piece. Then the volume is approximately the sum∑

i

f(xi, yi)∆Ai,

where ∆Ai is the area of the region Ri. Taking the limit, as the area
of each piece goes to zero, we get the volume.

How do we compute the double integral? First we imagine dividing
the region into small rectangles. The area of each rectangle is

∆Ai = ∆xi∆yi.

Summing first over y and then x, we can compute the area by first
integrating over y and then x.

Example 15.2. Compute the volume of f(x, y) = 2x+ 3y− 1 over the
rectangle 1 ≤ x ≤ 3, 1 ≤ y ≤ 2.

∫∫
R

(2x + 3y − 1) dA =

∫ x=3

x=1

∫ y=2

y=1

(2x + 3y − 1) dydx.

First, we compute the inner integral∫ y=2

y=1

(2x+3y−1) dy =

[
2xy+3y2/2−y

]2
1

= (4x+6−2)−(2x+3/2−1) = 2x+7/2.

Now compute the outer integral∫ x=3

x=1

2x + 9/2 dx =

[
x2 + 7x/2

]3
1

= (9 + 21/2)− (1 + 7/2) = 15.

Note that we can switch the order of integration. If we first sum over
x and then y, then we first integrate over x and then over y. Of course
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we get the same answer:∫∫
R

(2x + 3y − 1) dA =

∫ y=2

y=1

∫ x=3

x=1

(2x + 3y − 1) dxdy.

Compute the inner integral∫ x=3

x=1

(2x+3y−1) dx =

[
x2+3yx−x

]3
1

= (9+9y−3)−(1+3y−1) = 6+6y.

Now compute the outer integral∫ y=2

y=1

6 + 6y dy =

[
6y + 3y2

]2
1

= 12 + 12− 6− 3 = 15.

What happens when we want to integrate over a region which is not
a rectangle?

Example 15.3. Compute the volume of f(x, y) = x+3y over the circle
x2 + y2 ≤ 1.

The outer limits for x are relatively straightforward, the largest value
of x is 1 and the smallest −1. But the limits for y are dependent on x.
Imagine fixing a value for x; we get a vertical line. The lower limit for
y represents where this line first meets the region. The upper limit for
y represents where this line leaves the region.

(x,−
√
1− x2)

(x,
√
1− x2)

Figure 1. Limits for y

∫∫
R

(x + 3y) dA =

∫ x=1

x=−1

∫ y=
√
1−x2

y=−
√
1−x2

(x + 3y) dydx.

Inner integral:∫ y=
√
1−x2

y=−
√
1−x2

(2x + 3y) dy =

[
xy + 3y2/2

]√1−x2

−
√
1−x2

= 2x
√

1− x2.
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Outer integral:∫ x=1

x=−1
2x
√

1− x2 dx =

[
− 2/3(1− x2)3/2

]1
−1

= 0.

Notice that in retrospect we could have predicted that the integral is
zero. The function f(x, y) is a sum of x and 3y. x is odd with respect
to x and y is odd with respect to y, so both pieces integrate to zero.

Example 15.4. Compute ∫ 1

0

∫ 1

x

ey
2

dydx.

Note that we cannot compute the inner integral,∫ 1

x

ey
2

dy.

since there is no way to integrate ey
2
. Instead, let’s switch the order of

integration. To do this, we first have to determine the region we are
integrating over. x ranges from 0 to 1. For a given value of x, y ranges
from x to 1. So the region of integration is the triangle x ≥ 0, y ≤ 1
and y ≥ x.

y

x

(x, x)

(x, 1)

Figure 2. Region of integration

So we have ∫ 1

0

∫ 1

x

ey
2

dydx =

∫ 1

0

∫ y

0

ey
2

dxdy.

The inner integral is∫ y

0

ey
2

dx =

[
xey

2

]y
0

= yey
2

.
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y

x

(0, y) (y, y)

Figure 3. Limits of integral

The outer integral is∫ 1

0

yey
2

dy =

[
1/2ey

2

]1
0

= 1/2(e− 1).
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