18.02 HOMEWORK #3, DUE THURSDAY SEPTEMBER 27TH

Part A (17 points)

(09/20) Read: 13.2, 13.4; Notes TA.
13.2/7, <u>15</u>, <u>53–58</u>
2A/1abcde, 2abde, 3abc, 5ab
2B/1ab, <u>3</u>, <u>6</u>, <u>9</u>;
13.4/57.
(09/21) Holiday
(09/25) Review

PART B (15 POINTS)

1. (Immediately, 8 points: 2+1+1+2+2) In 3D computer graphics, one needs to represent 3-dimensional objects on a plane screen, by drawing a given point P at the place where the line from P to the eye meets the screen. Suppose that the screen is the yz-plane, and the eye is at E = (2, 0, 0).

(i) At what point Q = (y, z) in the *yz*-plane should one represent the point $P = (x_0, y_0, z_0)$? (Express *y* and *z* in terms of the coordinates of *P*. Assume that $x_0 < 2$. Why is this assumption legitimate?)

(ii) What does the image on the screen of a line segment in space look like? (Justify your answer.)

(iii) A line segment connects $P_0 = (-1, -3, 1)$ to $P_1 = (-2, 4, 6)$. What is drawn on the screen?

(iv) A bird leaves from P_0 at time t = 0, and flies in a straight line at constant speed in such a way that it passes through P_1 at time t = 1. What does the trajectory of the bird (for $t \ge 0$) look like on the screen? Show that, as t tends to infinity, the trajectory on the screen tends to a limit point (the "vanishing point"), and give its coordinates.

(v) In fact, part of the trajectory of the bird is hidden by a vertical fence erected in front of the observer. The fence lies in the plane x = 1, and its top is at the altitude z = 1. What portion of the trajectory is hidden? (*Hint: observe that the points hidden by the fence are exactly those which lie below a certain plane passing through E.*)

2. (Thursday, 3 points: 1+2)

(i) Sketch some level curves of the function $\max(|x|, |y|)$.

(ii) Find a function whose level curves are the same as in (a), but rotated through $\pi/4$.

3. (Thursday, 4 points: 3+1)

(i) Let $w = x^y (= e^{y \ln x})$. Give an approximate formula for the small change Δw in the value of w produced by small changes Δx and Δy in the values of x and y. Use this to calculate an approximate value of $1.98^{2.01}$. Compare your answer with the exact value.

b) Starting from $2^2 = 4$, is the value of w more sensitive to small changes in x or in the exponent y? (Justify your answer.)