## MODEL ANSWERS TO HWK \#9

1. Suppose that $X$ has genus $g$. Let $D=(g+1) P$. By Riemann-Roch,

$$
h^{0}\left(X, \mathcal{O}_{X}((g+1) P)\right) \geq(g+1)-g+1=2
$$

Elements of $H^{0}\left(X, \mathcal{O}_{X}((g+1) P)\right)$ correspond to rational functions with pole no worse than $(g+1) P$. As the space of regular functions, which is the same as the space of constant functions, spans a one dimensional subspace, we may find a non-constant rational function with poles only at $P$.
2. By (1) we may find $f_{1}, f_{2}, \ldots, f_{r}$ where $f_{i}$ has exactly one pole at $P_{i}$. Let

$$
f=\sum a_{i} f_{i},
$$

where $a_{i}$ are scalars. Then $f$ only has poles along $P_{1}, P_{2}, \ldots, P_{r}$. The set of points $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in \mathbb{A}^{r}$ where $f$ has a pole at $P_{i}$ is an open subset $U_{i}$, which is non-empty since $f_{i}$ defines a point of $U_{i}$. Since the groundfield is algebraically closed, it is infinite and $U=\cap U_{i}$ is non-empty. But then if $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in U$ then $f$ has a pole at $P_{1}, P_{2}, \ldots, P_{r}$.
3. $X$ is a quasi-projective variety so we may embed it into a projective variety $\bar{X}$. Replacing $\bar{X}$ by its normalisation, which does not change $X$ as $X$ is normal, we may assume that $\bar{X}$ is a curve.
Let $P_{1}, P_{2}, \ldots, P_{r}$ be the points belonging to $\bar{X}$ but not to $X$. By (2) we may find a rational function whose polar locus is precisely $X . f$ determines a morphism

$$
\bar{X} \longrightarrow \mathbb{P}^{1}
$$

such that the inverse image of $\infty$ is $P_{1}, P_{2}, \ldots, P_{r}$. The restriction of this morphism to $X$ defines a finite morphism to $\mathbb{A}^{1}$. But then $X$ is affine by (III.4.2).
4. By (III.3.1) we may assume that $X$ is reduced. By (III.3.2) we may assume that $X$ is irreducible, that is, we may assume that $X$ is integral. But then $X$ is affine by 3 .
5. Let $d=\operatorname{deg} D \geq 0$. Note that

$$
h^{0}\left(C, \mathcal{O}_{X}\left(K_{C}-D\right)\right) \leq h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}\right)\right)=g
$$

Hence, by Riemann-Roch,

$$
h^{0}\left(X, \mathcal{O}_{X}(D)\right)=d-g+1+h^{0}\left(C, \mathcal{O}_{X}\left(K_{C}-D\right)\right) \leq d+1 .
$$

Thus

$$
|D| \leq \operatorname{deg} D
$$

Clearly we have equality if $D=0$ or $g=0$. Suppose that $D \neq 0$ and we have equality. By assumption

$$
D=\sum_{i=1}^{d} P_{i} .
$$

Let $P=P_{d}$ and consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{C}(D-P) \longrightarrow \mathcal{O}_{C}(D) \longrightarrow \mathcal{O}_{P}(D) \longrightarrow 0
$$

Taking cohomology we see that

$$
\operatorname{deg} D-1 \leq|D|-1 \leq|D-P| \leq \operatorname{deg} D-1
$$

so that

$$
|D-P|=\operatorname{deg}(D-P)
$$

By induction on the degree we see that $\left|P_{1}\right|=\operatorname{deg} P_{1}=1$ so that there is a morphism of degree one to $\mathbb{P}^{1}$. But this morphism is then an isomorphism, that is, $C=\mathbb{P}^{1}$ and $g=0$.
6. Let $D$ be a divisor of degree $g+1$. Then

$$
h^{0}\left(C, \mathcal{O}_{C}(D)\right) \geq g+1-g+1=2
$$

Therefore we may find a non-constant rational function $f$ with pole no worse than $D$. The corresponding morphism

$$
X \longrightarrow \mathbb{P}^{1}
$$

has degree equal to the degree of the polar locus of $f$, which is at most $g+1$.

