MODEL ANSWERS TO HWK \#8

5.5 We prove (a) and (c) by induction on the codimension of Y. By assumption, Y is the intersection of a hypersurface of degree d and another complete intersection subvariety Z of codimension one less than the codimension of Y. There is an exact sequence

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{Z} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

By assumption $\mathcal{I}=\mathcal{O}_{Z}(-d)$. Twisting by $\mathcal{O}_{Z}(n)$ preserves exactness and by induction we have

$$
h^{i}\left(Z, \mathcal{O}_{Z}(m)\right)=0
$$

for all $0<i<q+1$ and all positive integers m. This gives (c) and we have

$$
H^{0}\left(Z, \mathcal{O}_{Z}(n)\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(n)\right)
$$

is surjective. Composing this gives (a).
(b) Note that $h^{0}\left(X, \mathcal{O}_{X}\right)=1$ and $h^{0}\left(Y, \mathcal{O}_{Y}\right)$ is the number of connected components of Y. Take $n=0$.
(d) Immediate from (c).
5.6 (a)
(1) There is an exact sequence

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{Q} \longrightarrow 0
$$

Note that $\mathcal{I}=\mathcal{O}_{X}(-2)$. Twisting by $\mathcal{O}_{X}(n)$, we get that

$$
h^{1}\left(Q, \mathcal{O}_{Q}(n, n)\right)=0
$$

There is an exact sequence

$$
0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{O}_{Q} \longrightarrow \mathcal{O}_{F} \longrightarrow 0
$$

where F is a curve of type $(1,0)$, that is a curve of the form $\{p\} \times \mathbb{P}^{1}$. We have $\mathcal{J}=\mathcal{O}_{Q}(-1,0)$. Twisting by $\mathcal{O}_{Q}(n, n)$ we have

$$
0 \longrightarrow \mathcal{O}_{Q}(n-1, n) \longrightarrow \mathcal{O}_{Q}(n, n) \longrightarrow \mathcal{O}_{F}(n) \longrightarrow 0,
$$

Now we have already seen that $h^{1}\left(Q, \mathcal{O}_{Q}(n, n)\right)=0$ and the map

$$
H^{0}\left(Q, \mathcal{O}_{Q}(n, n)\right) \longrightarrow H^{0}\left(F, \mathcal{O}_{F}(n)\right)
$$

is surjective by inspection. It follows that

$$
h^{1}\left(Q, \mathcal{O}_{Q}(n-1, n)\right)=0 .
$$

(2) If $a \neq b$ then we might as well assume that $a<b$. Twisting the second exact sequence above by $(a+1, b)$, we get an exact sequence

$$
0 \longrightarrow \mathcal{O}_{Q}(a, b) \longrightarrow \mathcal{O}_{Q}(a+1, b) \longrightarrow \mathcal{O}_{F}(b) \longrightarrow 0
$$

As $b<0, h^{0}\left(F, \mathcal{O}_{F}(b)\right)=0$ and so taking the long exact sequence of cohomology, we get

$$
h^{1}\left(Q, \mathcal{O}_{Q}(a, b)\right) \leq h^{1}\left(Q, \mathcal{O}_{Q}(a+1, b)\right)
$$

Thus we may reduce to the case $a=b$, in which case we can apply (1). (3) Let Y be a curve of type a, the union of a copies of \mathbb{P}^{1}. Then there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{Q}(a, 0) \longrightarrow \mathcal{O}_{Q} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

As

$$
\begin{equation*}
h^{0}\left(Y, \mathcal{O}_{Y}\right)=a \quad \text { and } \quad h^{0}\left(Q, \mathcal{O}_{Q}\right)=1, \tag{b}
\end{equation*}
$$

the result is clear.
(1) There is an exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{O}_{Q} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0 .
$$

As Y is a curve of type (a, b), we have $\mathcal{K}=\mathcal{O}_{Q}(-a,-b)$. (a.2) implies that

$$
H^{0}\left(Q, \mathcal{O}_{Q}\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}\right)
$$

is surjective, so that

$$
h^{0}\left(Y, \mathcal{O}_{Y}\right) \leq 1
$$

But the LHS is equal to the number of connected components of Y.
(2) Follows from Bertini and the fact that Y is connected.
(3) By (II.5.1.4), Y is projectively normal if and only if

$$
H^{0}\left(X, \mathcal{O}_{X}(n)\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(n)\right)
$$

is surjective for all integers n. Since

$$
H^{0}\left(X, \mathcal{O}_{X}(n)\right) \longrightarrow H^{0}\left(Q, \mathcal{O}_{Q}(n)\right)
$$

is surjective, Y is projectively normal if and only if

$$
H^{0}\left(Q, \mathcal{O}_{Q}(n)\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(n)\right)
$$

is surjective. As $h^{1}\left(Q, \mathcal{O}_{Q}(n)\right)=0$, this holds if and only if

$$
h^{1}\left(Q, \mathcal{O}_{Q}(n-a, n-b)\right)=0
$$

for all integers n.
If $|a-b| \leq 1$, then Y is projectively normal by (a.1). Otherwise if $a<b-1$ and we take $n=b$, then (a.3) shows that Y is not projectively normal.
(c) As always, consider the usual exact sequence

$$
0 \longrightarrow \mathcal{O}_{Q}(n-a, n-b) \longrightarrow \mathcal{O}_{Q}(n) \longrightarrow \mathcal{O}_{Y}(n) \longrightarrow 0
$$

If n is sufficiently large, then by Serre vanishing, we have that

$$
\chi\left(Y, \mathcal{O}_{Y}(n)\right)=h^{0}\left(Y, \mathcal{O}_{Y}(n)\right)=h^{0}\left(Q, \mathcal{O}_{Q}(n)\right)-h^{0}\left(Q, \mathcal{O}_{Q}(n-a, n-b)\right)
$$

Suppose $a \neq b$. Then we may suppose that $a<b$. Consider the exact sequence
$0 \longrightarrow \mathcal{O}_{Q}(n-a-1, n-b) \longrightarrow \mathcal{O}_{Q}(n-a, n-b) \longrightarrow \mathcal{O}_{F}(n-b) \longrightarrow 0$.
Assuming n is sufficiently large, we get that

$$
h^{0}\left(Q, \mathcal{O}_{Q}(n-a, n-b)\right)=h^{0}\left(Q, \mathcal{O}_{Q}(n-a-1, n-b)\right)+(n-b+1),
$$

so that
$h^{0}\left(Q, \mathcal{O}_{Q}(n-a, n-b)\right)=h^{0}\left(Q, \mathcal{O}_{Q}(n-b, n-b)\right)+(b-a)(n-b+1)$.
On the other hand,

$$
\begin{aligned}
h^{0}\left(Q, \mathcal{O}_{Q}(n)\right) & =h^{0}\left(X, \mathcal{O}_{X}(n)\right)-h^{0}\left(X, \mathcal{O}_{X}(n-2)\right) \\
& =\binom{n+3}{3}-\binom{n+1}{3} \\
& =\frac{(n+1)[(n+3)(n+2)-n(n-1)]}{6} \\
& =(n+1)^{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
\chi\left(Y, \mathcal{O}_{Y}(n)\right) & =(n+1)^{2}-(n+1-b)^{2}-(b-a)(n-b+1) \\
& =2 b(n+1)-b^{2}-b n+a n+b^{2}-a b-b+a \\
& =(a+b) n+a+b-a b,
\end{aligned}
$$

which is then the Hilbert polynomial of Y. It follows that $p_{a}(Y)=$ $a b-a-b+1$.
5.8 (a) Apply (II.6.7).
(b) As \mathcal{L} is very ample, there is an embedding of \tilde{X} into \mathbb{P}^{n} such that $\mathcal{L}=\mathcal{O}_{\tilde{X}}(1)$. Let H be a hyperplane section which avoids the inverse image of the singular locus of X. Then $D=H \cap \tilde{X}$ is a divisor on \tilde{X} such that $D=\sum P_{i}$, where $Q_{i}=f\left(P_{i}\right)$ is a smooth point of X, for each i. Let $E=\sum Q_{i}$. Then E is a Cartier divisor on X. Let $\mathcal{L}_{0}=\mathcal{O}_{X}(E)$. Then $f^{*} \mathcal{L}_{0} \simeq \mathcal{L}$. By (5.7.d), \mathcal{L}_{0} is ample. By (II.7.6) some power of \mathcal{L} is very ample and it follows by (II.5.16.1) that X is projective.
(c) Let X^{\prime} be the disjoint union of the $X_{1}, X_{2}, \ldots, X_{r}$. Then there is a natural morphism $i: X^{\prime} \longrightarrow X$. This gives rise to an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}^{*} \longrightarrow i_{*} \mathcal{O}_{X^{\prime}}^{*} \longrightarrow \delta \longrightarrow 0
$$

where δ is supported on a zero dimensional scheme. Taking the long exact sequence of cohomology and using (4.5), we see that

$$
\operatorname{Pic} X \longrightarrow \bigoplus \operatorname{Pic} X_{i}
$$

is surjective. Pick ample line bundles $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{r}$ on $X_{1}, X_{2}, \ldots, X_{r}$. Then we may find a line bundle \mathcal{L} such that $\left.\mathcal{L}\right|_{X_{i}} \simeq \mathcal{L}_{i} . \mathcal{L}$ is ample by (5.7.c) and so X is projective.
(d) Let \mathcal{J} be the ideal sheaf of $X_{\text {red }}$ in X. Let \mathcal{X}_{k} be subscheme of X determined by \mathcal{I}^{k}. Then $X_{k} \subset X_{k+1}$ and the ideal sheaf \mathcal{I}_{k} squares to zero. By (4.6), there is an exact sequence

$$
\operatorname{Pic} X_{k+1} \longrightarrow \operatorname{Pic} X_{k} \longrightarrow H^{2}\left(X, \mathcal{I}_{k}\right) .
$$

By (2.7) the last group is zero. Composing, we get that

$$
\operatorname{Pic} X \longrightarrow \operatorname{Pic} X_{\mathrm{red}},
$$

is surjective. Let \mathcal{M} be an ample line bundle on $X_{\text {red }}$ and let \mathcal{L} be a line bundle on X whose restriction to $X_{\text {red }}$ is \mathcal{M}. (5.7.c) implies that \mathcal{L} is ample.
5.9. Note that

$$
\frac{x_{j}}{x_{i}} \mathrm{~d}\left(\frac{x_{i}}{x_{j}}\right)=\frac{1}{x_{i} x_{j}}\left(x_{j} \mathrm{~d} x_{i}-x_{i} \mathrm{~d} x_{j}\right)=\frac{\mathrm{d} x_{i}}{x_{i}}-\frac{\mathrm{d} x_{j}}{x_{j}} .
$$

It follows that we do have a 1-cocycle.
As in the hint, we just have to show that $\delta\left(\mathcal{O}_{X}(1)\right) \neq 0$. Note that

$$
\left.\mathcal{L}\right|_{U_{i}} \simeq \mathcal{O}_{U_{i}}
$$

via the map which sends $f \in \mathcal{O}_{U_{i}}(V)$ to $x_{i} f$, so that $\mathcal{O}_{X}(1)$ is represented by the 1-cocycle α

$$
\frac{x_{1}}{x_{0}} \text { on } U_{01}, \quad \frac{x_{2}}{x_{1}} \quad \text { on } U_{12}, \text { and } \quad \frac{x_{0}}{x_{2}} \quad \text { on } U_{20} .
$$

Let $\mathcal{U}=\left\{U_{0}, U_{1}, U_{2}\right\}$. The relevant commutative diagram is then

Now

$$
\Gamma\left(U_{i j}, \mathcal{O}_{\mathbb{P}^{2}}^{*}\right)=K\left[\frac{x_{i}}{x_{j}}, \frac{x_{j}}{x_{i}}\right]
$$

On the other hand,

$$
\Gamma\left(U_{i j}, \mathcal{O}_{X^{\prime}}\right) \simeq \Gamma\left(U_{i j}, \mathcal{O}_{\mathbb{P}^{2}}\right)\left[\epsilon_{i j}\right] \simeq K\left[\frac{x_{i}}{x_{j}}, \frac{x_{j}}{x_{i}}, \frac{x_{k}}{x_{i}}\right]\left[\epsilon_{i j}\right]
$$

where $\epsilon_{i j}^{2}=0$ and $\{i, j, k\}=\{1,2,3\}$. Note that the units of any ring with an element ϵ such that $\epsilon^{2}=0$ are of the form $a+\epsilon b$, where a is a unit.
ξ determines a derivation on $U_{i j}$ given by a map

$$
\Gamma\left(U_{i j}, \mathcal{O}_{\mathbb{P}^{2}}\right) \longrightarrow \Gamma\left(U_{i j}, \omega\right) .
$$

Note that if E is a two dimensional vector space, the identification of $\operatorname{Hom}\left(E, \wedge^{2} E\right)$ with E is via the map which sends a vector $v \in E$ to the linear map

$$
w \longrightarrow w \wedge v
$$

Now

$$
\mathrm{d}\left(\frac{x_{i}}{x_{j}}\right) \wedge \xi_{i j}=\frac{x_{i}}{x_{j}} \xi_{i j} \wedge \xi_{i j}=0
$$

Similarly

$$
\mathrm{d}\left(\frac{x_{j}}{x_{i}}\right) \wedge \xi_{i j}=-\frac{x_{j}}{x_{i}} \xi_{j i} \wedge \xi_{j i}=0
$$

But

$$
\mathrm{d}\left(\frac{x_{k}}{x_{j}}\right) \wedge \xi_{i j}=\frac{x_{j}}{x_{i}} \mathrm{~d}\left(\frac{x_{k}}{x_{j}}\right) \wedge \mathrm{d}\left(\frac{x_{i}}{x_{j}}\right) .
$$

The derivation corresponding to $\xi_{i j}$ is therefore

$$
\frac{x_{i}}{x_{j}} \longrightarrow 0, \quad \frac{x_{j}}{x_{i}} \longrightarrow 0 \quad \text { and } \quad \frac{x_{k}}{x_{j}} \longrightarrow \frac{x_{j}}{x_{i}} \mathrm{~d}\left(\frac{x_{k}}{x_{j}}\right) \wedge \mathrm{d}\left(\frac{x_{i}}{x_{j}}\right) .
$$

We can lift the 1-cocycle α to the 1-cochain $\beta=\left(\beta_{2}, \beta_{0}, \beta_{1}\right)$ in $C^{1}\left(\mathcal{U}, \mathcal{O}_{X^{\prime}}^{*}\right)$, This maps to the 2-cocycle γ in $C^{2}\left(\mathcal{U}, \mathcal{O}_{X^{\prime}}^{*}\right)=\Gamma\left(U_{012}, \mathcal{O}_{X^{\prime}}^{*}\right)$. To figure out the image of β, let's calculate everything in terms of the isomorphism

$$
\phi: \Gamma\left(U_{0}, \mathcal{O}_{X^{\prime}}\right) \longrightarrow K\left[\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}\right][\epsilon] .
$$

We have

$$
\begin{aligned}
& \phi\left(\beta_{2}\right)=\frac{x_{1}}{x_{0}} \\
& \phi\left(\beta_{0}\right)=\frac{x_{2}}{x_{1}}+\epsilon \frac{x_{0}}{x_{1}} \mathrm{~d}\left(\frac{x_{2}}{x_{0}}\right) \wedge \mathrm{d}\left(\frac{x_{1}}{x_{0}}\right) \\
& \phi\left(\beta_{1}\right)=\frac{x_{0}}{x_{2}}
\end{aligned}
$$

Thus γ is represented by

$$
\frac{x_{1}}{x_{0}}\left(\frac{x_{2}}{x_{1}}+\epsilon \frac{x_{0}}{x_{1}} \mathrm{~d}\left(\frac{x_{2}}{x_{0}}\right) \wedge \mathrm{d}\left(\frac{x_{1}}{x_{0}}\right)\right) \frac{x_{0}}{x_{2}}=1+\epsilon \frac{x_{0}}{x_{2}} \mathrm{~d}\left(\frac{x_{2}}{x_{0}}\right) \wedge \mathrm{d}\left(\frac{x_{1}}{x_{0}}\right)
$$

Thus γ lifts to the element

$$
\frac{x_{0}}{x_{2}} \mathrm{~d}\left(\frac{x_{2}}{x_{0}}\right) \wedge \mathrm{d}\left(\frac{x_{1}}{x_{0}}\right)
$$

of $C^{2}(\mathcal{U}, \omega)$, which is a non-zero element of $H^{2}(X, \omega)$.
2. Note that $e=0$ if and only if $1 \in H^{0}\left(X, \mathcal{O}_{X}\right)$ is in the image of

$$
\phi: H^{0}(X, \mathcal{G}) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\right)
$$

Suppose that $\phi(\sigma)=1$. Define a sheaf homomorphism

$$
\mathcal{O}_{X} \longrightarrow \mathcal{G}
$$

by sending $f \in \mathcal{G}(U)$ to $\left.f \sigma\right|_{U}$. It is easy to see that this defines a splitting.
Conversely, if the exact sequence is split, it is clear that ϕ is surjective. 3 . Let $X=\mathbb{P}^{1}$. Pick m such that $\mathcal{E}(m)$ is globally generated. Then we get a morphism of sheaves

$$
\mathcal{O}_{X} \longrightarrow \mathcal{E}(m)
$$

If we dualise this morphism we get a morphism

$$
\mathcal{E}^{*}(-m) \longrightarrow \mathcal{O}_{X}
$$

Let \mathcal{I} be the image. Then \mathcal{I} is a \mathcal{O}_{X}-submodule of \mathcal{O}_{X}, that is, \mathcal{I} is an ideal sheaf. As $X=\mathbb{P}^{1}$ is a curve, this defines a zero dimensional subscheme. Let $D \geq 0$ be the associated divisor. Then $\mathcal{I}=\mathcal{I}_{z}=$ $\mathcal{O}_{X}(-D)=\mathcal{O}_{X}(-d)$ where $d=\operatorname{deg} D$. So we get a surjective morphism

$$
\mathcal{E}^{*}(-m) \longrightarrow \mathcal{O}_{X}(-d)
$$

Twisting by d we get a surjective morphism

$$
\mathcal{E}^{*}(-m+d) \longrightarrow \mathcal{O}_{X}
$$

Finally replacing $m-d$ by m we have a surjective morphism

$$
\mathcal{E}^{*}(-m) \longrightarrow \mathcal{O}_{X}
$$

Let \mathcal{K} be the kernel. If we pick a point $p \in X$, we get an exact sequence on stalks,

$$
0 \longrightarrow \mathcal{K}_{p} \longrightarrow \mathcal{O}_{X, p}^{r} \longrightarrow \mathcal{O}_{X, p} \longrightarrow 0
$$

where

$$
\mathcal{O}_{X, p} \simeq k[x]_{x}
$$

As $k[x]_{x}$ is a PID, it follows that

$$
\mathcal{K}_{p} \simeq \mathcal{O}_{X, p}^{r-1}
$$

so that \mathcal{K} is locally free of rank $r-1$. Denoting by \mathcal{Q} the dual of \mathcal{K}, we get an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{E}(m) \longrightarrow \mathcal{Q} \longrightarrow 0 .
$$

As \mathcal{Q} is locally free of rank $r-1$, by induction on r, we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{E}(m) \longrightarrow \bigoplus_{i=1}^{r-1} \mathcal{O}_{X}\left(a_{i}\right) \longrightarrow 0
$$

for some integers $a_{1}, a_{2}, \ldots, a_{r-1}$.
Suppose that we tensor this exact sequence by $\mathcal{O}_{X}(-k)$, where

$$
k>\max _{i} a_{i}
$$

and $k>0$. Then $h^{0}(X, \mathcal{E}(m-k))=0$, since both $h^{0}\left(X, \mathcal{O}_{X}(-k)\right)=0$ and $h^{0}(X, \mathcal{Q}(-k))=0$. It follows that there is a smallest integer m^{\prime} such that $h^{0}\left(X, \mathcal{E}\left(m^{\prime}\right)\right) \neq 0$. Note if we go through the process above to obtain an exact sequence, then the corresponding ideal sheaf \mathcal{I}^{\prime} is trivial, that is, $d^{\prime}=0$, by minimality of m^{\prime}. Therefore, replacing m by m^{\prime}, we get the same exact sequence as before, but in addition we also have $h^{0}(X, \mathcal{E}(m-1))=0$.
As

$$
h^{1}\left(X, \mathcal{O}_{X}(-1)\right)=h^{0}\left(X, \omega_{X}(1)\right)=h^{0}\left(X, \mathcal{O}_{X}(-1)\right)=0
$$

it follows that

$$
h^{0}(X, \mathcal{Q}(-1))=0
$$

In particular $a_{i}-1<0$, that is $a_{i}<1$. It follows that

$$
h^{1}(X, \mathcal{K})=\sum_{i} h^{1}\left(X, \mathcal{O}_{X}\left(-a_{i}\right)\right)=\sum_{i} h^{0}\left(X, \mathcal{O}_{X}\left(a_{i}-2\right)\right)=0 .
$$

But then (2) implies that the short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{E}^{*}(-m) \longrightarrow \mathcal{O}_{X} \longrightarrow 0,
$$

is split, so that $\mathcal{E}^{*}(-m)$ is a direct sum of line bundles. But then $\mathcal{E}(m)$ is a direct sum of the dual line bundles and so \mathcal{E} is also a direct sum of line bundles.
It is easy to see that one can recover the sequence

$$
a_{1}, a_{2}, \ldots, a_{r},
$$

from the data of the

$$
h^{0}(X, \mathcal{E}(d)),
$$

for all integers d.

