
MODEL ANSWERS TO HWK #6

8.8. We follows the proof of (II.8.19). Note that if a section of a locally
free sheaf vanishes on a dense open subset then the section is zero to
start with.
Therefore it suffices to show that if V ⊂ X is an open subset of X whose
complement has codimension at least two then the natural restriction
maps

H0(X,OX(qKX)) −→ H0(V,OV (qKV )) and H0(X,Ωq
X/k) −→ H0(V,Ωq

V/k),

are isomorphisms. For the first map, we argue exactly as in the proof
of (II.8.19). For the second map, from the fact that

H0(U,OU) −→ H0(U ∩ V,OU∩V ),

is a bijection, it follows that the direct sum of these maps is also bijec-
tion. As Ωq

X/k is a locally free sheaf, the second map is an isomorphism

as well.
2.1 (a) There is an exact sequence

0 −→ ZU −→ Z −→ ZP ⊕ ZQ −→ 0.

From the long exact sequence of cohomology we get

0 −→ H0(X,Z) −→ H0(X,ZP ⊕ ZQ) −→ H1(X,ZU) −→ 0.

Here we used that fact H0(X,ZU) = 0 and H1(X,Z) = 0. In this case,

0 −→ Z −→ Z⊕ Z −→ H1(X,ZU) −→ 0,

so that H1(X,ZU) 6= 0.
(b) By induction on n. The case n = 1 is (a). Let V be the complement
of the first n hyperplanes and let Z be the last hyperplane. Then we
have an exact sequence

0 −→ ZU −→ ZV −→ (ZV )Z −→ 0.

The last map is the natural restriction map and one checks that ZU

is the kernel. Now (ZV )|Z is ZW , where W is the complement of n
general hyperplanes in Y = An−1. So we get an exact sequence

Hn−1(X,ZV ) −→ Hn−1(Z,ZW ) −→ Hn(X,ZU) −→ 0.

By induction Hn−1(Y,ZW ) 6= 0 and so it is enough to show that
Hn−1(X,ZV ) = 0.
By way on induction, we will prove that if V is the complement of r ≤ n
hyperplanes in An then H i(X,ZV ) = 0 for i ≥ min(r − 1, 1). Arguing
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as above we reduce to the case when r = 1. In this case V is the
complement of a single hyperplane H and there is an exact sequence

0 −→ ZV −→ Z −→ ZH −→ 0.

As Z is flasque we have H1(X,Z) = 0 and the map on global sections
is exact, and so H1(X,ZV ) = 0.
2.2 We have an exact sequence

0 −→ OX −→ K −→ K/OX −→ 0.

by (II.1.21.d). K is a locally constant sheaf on an irreducible topological
space so that it is flasque. K/OX is a direct sum of skyscraper sheaves.
A skyscraper sheaf is flasque and a direct sum of flasque sheaves is
flasque. By (II.1.21.e) taking global section is exact and H1(X,K) = 0
as K is flasque, so that H1(X,OX) = 0. On the other hand, X has
dimension one so H i(X,OX) = 0 for all i > 0 (or indeed, use the fact
that higher cohomology of flasque is zero).
2.3 (a) Suppose we are given a short exact sequence

0 −→ F −→ G −→ H −→ 0.

We check that

0 −→ ΓY (X,F) −→ ΓY (X,G) −→ ΓY (X,H),

is exact. Injectivity is clear and that the composition is zero, since
ΓY (X,F) ⊂ Γ(X,F). Suppose that g ∈ ΓY (X,G) is sent to zero.
Then we may find f ∈ Γ(X,F) such that g is the image of f . But it is
clear that the support of f belongs to Y , so that f ∈ ΓY (X,F).
(b) We check that

0 −→ ΓY (X,F) −→ ΓY (X,G) −→ ΓY (X,H),

is exact is H is flasque. By (a) we only need to check the last map
is surjective. But as F is flasque and h ∈ ΓY (X,H), we may find
g ∈ Γ(X,G) mapping to h. Let g′ be the restriction of g to X − Y .
Then g′ is sent to zero, since the restriction of h to U is zero. So we
may find f ′ ∈ Γ(U,F) mapping to g′. As F is flasque, we may lift f ′ to
f ′′ ∈ Γ(X,F). Let g′′ ∈ Γ(X,G) be the image of f ′′ and let g1 = g−g′′.
Then g1 maps to h and the support of g1 is contained in Y , so that
g1 ∈ ΓY (X,F).
(c) Suppose that we embed F into an injective sheaf I and let G be
the quotient,

0 −→ F −→ I −→ G −→ 0.

If we take the long exact sequence associated to the right derived func-
tors of ΓY , we use (b) and we use the fact that H i

Y (X, I) = 0 for i > 0
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we get that

H1
Y (X,F) = 0 and H i+1

Y (X,F) ' H i
Y (X,G).

But I is flasque so that G is flasque. It follows that H i
Y (X,F) = 0 for

all i > 0 by induction on i.
(d) We have an exact sequence

0 −→ K −→ Γ(X,F) −→ ΓY (X − Y,F) −→ 0,

where K is the kernel, where the last map is surjective, as F is flasque.
Almost by definition, K = ΓY (X,F).
(e) Let I• be an injective resolution of F . Let J i = I i|U . Then J • is
an injective resolution of F|U . As injective sheaves are flasque we have
exact sequences

0 −→ ΓY (X, I i) −→ Γ(X, I i) −→ ΓY (U, I|U) −→ 0,

by part (d). The long exact sequence follows from the snake lemma.
(f) There are natural restriction maps,

ΓY (X,F) −→ ΓY (V,F|V ),

which are clearly isomorphisms. As the category of abelian sheaves has
enough injectives, ΓY (V, ·) is a universal δ-functor. The isomorphisms
follow by (1.4).
2.4 Let I• an injective resolution of F as constructed in (2.2). Let
Y = Y1 ∪ Y2. Then we have short exact sequences

0 −→ ΓY12(X,F) −→ ΓY1(X,F)⊕ ΓY2(X,F) −→ ΓY (X,F) −→ 0.

This follows from the exact sequence on stalks and the fact that taking
direct sums is exact.
3.1 A closed subscheme of an affine scheme is affine, so that if X is
affine then then Xred is affine.
So suppose that Xred is affine. Let F be a quasi-coherent sheaf on X
and let N be the sheaf of nilpotent elements. As X is noetherian we
N r+1 = 0 for some positive integer r. We have a filtration

N r · F ⊂ N r−1 · F ⊂ · · · ⊂ N · F ⊂ F ,
The successive quotients are annihilated by N , so that they are sup-
ported on Xred. It follows that the higher cohomology of the successive
quotients so that H i(X,F) = 0 for all i > 0. But then X affine.
3.2 If X is affine then every irreducible component is affine as the
irreducible components are closed subschemes.
So suppose that the irreducible components are affine. We proceed by
induction on the number of irreducible components r. If r = 1 there
is nothing to prove. Otherwise let Y be an irreducible component of
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X, let U = X − Y and let Z be the closure of U in X. Then Z has
r − 1 irreducible components and so it is affine by induction. There is
an exact sequence

0 −→ K −→ F −→ F|Z −→ 0,

where K is the kernel. Note that the support of K is Y . It follows that

H i(X,F) = 0,

for all i > 0. But then X is affine.
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