
MODEL ANSWERS TO HWK #5

8.2 Given x ∈ X, let Bx ⊂ V be the subset of sections s such that
sx ∈ mxE . Note that there is a linear map

φx : V −→ E/mxE ,

which sends a section s to its class in the quotient. Bx is then the
kernel of φx. As V generates E , φx is surjective. Note that E/mxE is
a vector space of dimension r equal to the rank of E . Thus Bx has
codimension r. Let B ⊂ X × V be the union of the Bx. Then B is a
closed subset of X × V (where V is considered as an affine space). Let
p : B −→ X denote projection onto the first factor and q : B −→ V
denote projection onto the second factor. Then p is surjective with
irreducible fibres of dimension dimV − r. It follows that B has dimen-
sion dimV − r + n < dimV . q(B) is a constructible subset of V . As
the dimension of B is less than the dimension of V , it follows that q(B)
is not dense in V .
Thus we may find s ∈ V which is not in B. But then sx /∈ mxE , for
every x ∈ X. s gives rise to an exact sequence

0 −→ OX −→ E −→ E ′ −→ 0,

where E ′ is defined to be the quotient. As sx /∈ mxE , it follows that E ′
is locally free.
8.3 (a) By virtue of (II.8.11) there is an exact sequence

p∗1ΩX/S −→ ΩX×
S
Y/S −→ ΩX×

S
Y/X −→ 0.

By virtue of (II.8.10),

ΩX×
S
Y/X = p∗2ΩY/S.

Thus there is an exact sequence

p∗1ΩX/S −→ ΩX×
S
Y/S −→ p∗2ΩY/S −→ 0.

By symmetry there is an exact sequence

p∗2ΩY/S −→ ΩX×
S
Y/S −→ p∗1ΩX/S −→ 0.

Composing we get a morphism of sheaves

p∗1ΩX/S = ΩX×
S
Y/Y −→ p∗1ΩX/S = ΩX×

S
Y/Y ,
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which is the identity. Thus we have a short exact sequence

0 −→ p∗1ΩX/S −→ ΩX×
S
Y/S −→ p∗2ΩY/S −→ 0,

and so by symmetry a short exact sequence

0 −→ p∗2ΩY/S −→ ΩX×
S
Y/S −→ p∗1ΩX/S −→ 0.

But then the injection in the first exact sequence defines a splitting of
the second exact sequence.
(b) We have

ΩX×Y/k ' p∗1ΩX/k ⊕ p∗2ΩY/k.

Now take the highest wedge product of both sides to get

ωX×Y ' p∗1ωX ⊗ p∗2ωY .
(c) We have ωP2 = OP2(−3). Thus

ωY = ωP2(Y ) = OY ,
by adjunction. It follows that ωX = OX and so pg(X) = 1. We have

pa(Y ) =

(
2

2

)
= 1,

and so
pa(X) = pa(Y )2 − 2pa(Y ) = 1− 2 = −1.

8.4 (a) Suppose that F1, F2, . . . , Fr ∈ S are homogeneous polynomials
which generate I. Let Hi be the hypersurface defined by Fi. Let Uj be
the standard open affine Xj 6= 0. Then

fi =
Fi

Xdi
j

,

where dj is the degree of Fi, generates the ideal ofHi∩Uj and f1, f2, . . . , fr
generates the ideal of Y ∩ Uj. But then

IY = IH1 + IH2 + · · ·+ IHr ,

and so
Y = H1 ∩H2 ∩ · · · ∩Hr.

Now suppose that
Y = H1 ∩H2 ∩ · · · ∩Hr.

We first show that the ideal of Hi is principal; there are many ways to
see this. For example, the ideal sheaf is a line bundle. Tensor by Hi to
get map

OPn −→ OPn(Hi).

The last line bundle is isomorphic to OPn(di) for some di and the image
of 1 is a polynomial Fi of degree di.
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Let I be the ideal of Y and let J be the ideal generated by F1, F2, . . . , Fr,
so that Y is the scheme associated to I and J ⊂ I. J has height r (since
Y has codimension r) and it is generated by r elements. It follows that
J is unmixed, the height of every associated prime is also r. But then
these primes correspond to irreducible components of Y and so I = J .
(b) Let X be the cone over Y . Then X is a complete intersection in
An+1. On the other hand, Y is regular in codimension one, as it is
normal, and so X is regular in codimension one as well (the singular
locus of X is the cone over the singular locus of Y ). But then X is
normal, so that Y is projectively normal.
(c) Surjectivity follows from (II.5.14.d). If X is a projective variety
note that the dimension h0(X,OX) of the k-vector space H0(X,OX) is
equal to the number of connected components of X. As H0(Y,OY ) is
a quotient of H0(Pn,OPn) = k, it follows that Y is connected.
(d) By (c) Y is always connected. By Bertini’s theorem and induction
on r, if we choose H1, H2, . . . , Hr belonging to an open subset of |H1|×
|H2| × · · ·× |Hr| then Y is regular. As Y is regular and Y is connected
it is irreducible. But then Y is a variety so that it is smooth.
(e) Let Z be the intersection of the first r − 1 hypersurfaces. By in-
duction on r,

KZ = (
r−1∑
i=1

di − n− 1)H|Z .

By adjunction, we have

KY = (KZ + Y )|Y = (KZ + drH|Z)|Y = (
r∑
i=1

di − n− 1)H|Y .

(f) In this case

pg(Y ) = h0(Y,OY (d− n− 1)) = h0(Pn,OPn(d− n− 1)) =

(
d− 1

n

)
.

Here we use lower case to denote the dimension of the corresponding
cohomology group and we use the fact that the surjection

H0(Pn,OPn(d− n− 1)) −→ H0(Y,OY (d− n− 1)),

is in fact an isomorphism, as no polynomial of degree d−n−1 vanishes
on Y .
(g) Let C = Y be the intersection of two smooth surfaces of degree d
and e. Let S be the first surface. Then there is an exact sequence

0 −→ H0(P3,OP3(e−4)) −→ H0(P3,OP3(d+e−4)) −→ H0(S,OS(d+e−4)) −→ 0.
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The first term is the space of polynomials of degree d+ e− 4 vanishing
on S; since any such is divisible by a polynomial of degree d, this is the
same as the space of polynomials of degree e− 4 on P3. Thus

h0(S,OS(d+ e− 4)) = h0(Pn,OPn(d+ e− 4))− h0(Pn,OPn(e− 4))

=

(
d+ e− 1

3

)
−
(
e− 1

3

)
.

Note that (
e− 1

3

)
=

(e− 1)(e− 2)(e− 3)

3
,

does indeed vanish when e = 1, 2 or 3. There is an exact sequence

0 −→ H0(S,OS(d−4)) −→ H0(S,OP3(d+e−4)) −→ H0(C,OC(d+e−4)) −→ 0.

The first term is the space of polynomials of degree d+ e− 4 vanishing
on C; since any such is divisible by a polynomial of degree e, this is
the same as the space of polynomials of degree d− 4 on S. Every such
is the restriction of a polynomial of degree d− 4 from P3 and no such
polynomial can vanish on S. Putting all of this together we have

pg(C) = h0(Pn,OPn(d+ e− 4))− h0(Pn,OPn(d− 4))− h0(Pn,OPn(e− 4))

=

(
d+ e− 1

3

)
−
(
d− 1

3

)
−
(
e− 1

3

)
=

1

2
de(d+ e− 1) + 1.

8.5 (a) Let U = X−Y and Ũ = X̃−Y ′. Then U and Ũ are isomorphic.
As Y has codimension at least two, it follows that

Cl(Ũ) = Cl(U) = Cl(X).

On the other hand, as Y ′ is a prime divisor, there is an exact sequence

Z −→ Cl(X̃) −→ Cl(Ũ) −→ 0.

As X and X̃ are smooth,

Cl(X) ' Pic(X) and Cl(X̃) ' Pic(X̃),

so that there is an exact sequence

Z −→ Pic(X̃) −→ Pic(X) −→ 0.

It is clear that the first map sends 1 to OX′(Y ′), the normal bundle of
Y ′ in X ′. The restriction of this to a fibre gives O(−1). Thus we have
a short exact sequence,

0 −→ Z −→ Pic(X̃) −→ Pic(X) −→ 0.
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The map

π∗ : Pic(X) −→ Pic(X̃),

which sends an invertible sheaf to its pullback defines a splitting of this
exact sequence. Thus

Pic(X ′) ' Pic(X)⊕ Z.
(b) We know that KX̃ = f ∗D+qY ′ for some integer q, for some Cartier

divisor on X, by (a). Restricting to Ũ which is isomorphic to U , we see
that D = KX , so that KX̃ = f ∗KX + qY ′. Now let’s apply adjunction
on Y ′, to get

KY ′ = (KX′ + Y ′)|Y ′ = (f ∗KX + (q + 1)Y ′)|Y ′ .

Let Z be the fibre of Y ′ −→ Y over a closed point y ∈ Y . The normal
bundle of Z in Y ′ is the pullback of the normal bundle of y in Y , so that
NZ/Y ′ is locally free, of rank the dimension of Y . Thus by adjunction,

KZ = KY ′|Z = (f ∗KX + (q + 1)Y ′)|Z .
Now (f ∗KX)|Z = 0 (it is the pullback of a divisor from a point) and Y ′

restricts to −H, the class of a hyperplane, so that KZ = −(q + 1)H.
On the other hand, Z = Pr−1 is a toric variety, so that KZ = −rH.
Comparing, we get q = r − 1.
2. X = X(F ) is given by some fan F . A proper birational toric
morphism Y −→ X is given by repeatedly adding one dimensional rays
to F and subdividing appropriately to get a fan G, so that Y = X(G)
is the toric variety associated to G.
Recall that if σ is a cone, then the corresponding affine toric variety
Uσ is smooth if and only if the primitive vectors v1, v2, . . . , vk spanning
the one dimensional faces of σ can be extended to a basis of the lattice
N .
The first step is to reduce to the case when every cone is simplicial,
that is, the vectors v1, v2, . . . , vk are at least independent in the vector
space NR. As the faces of a simplicial cone are simplicial, it suffices to
reduce to the case when every maximal (with respect to inclusion) cone
is simplicial. We proceed by induction on the number d of maximal
cones which are not simplicial. Suppose that σ is a maximal cone which
is not simplicial. Pick a vector v ∈ N which belongs to the interior of
σ. Let F ′ be the fan obtained from F by inserting the ray spanned by
v, and subdividing accordingly. This has the result of subdividing σ
into σ1, σ2, . . . , σl simplicial subcones, and otherwise leaves every other
maximal cone unchanged. It follows that F ′ contains one less maximal
cone which is not simplicial. After d steps, we reduce to the case when
every cone in F is simplicial.
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Given a simplicial cone σ, let v1, v2, . . . , vk be the primitive generators
of its one dimensional faces. Let V ⊂ NR be the vector space spanned
by σ (equivalently, spanned by v1, v2, . . . , vk), and let

Λ = Zv1 + Zv2 + · · ·+ Zvk,
be the lattice spanned by v1, v2, . . . , vk. Then the quotient

N

Λ
,

is a finitely generated abelian group. Let

r = rσ,

be the cardinality of the torsion part. As noted above Uσ is smooth if
and only if rσ = 1. Let

r = max
σ∈F

rσ,

be the maximum over all cones in F . We proceed by induction on r.
Pick a cone τ such that rτ = r, minimal (again with respect to inclu-
sion) with this property. Let v1, v2, . . . , vl be the primitive generators
of the one dimensional faces of τ . Then we may find a vector w, in
the interior of τ and belonging to the lattice N , whose image in N/Λ′,
where Λ′ is the lattice spanned by v1, v2, . . . , vl, is torsion. Consider
the fan F ′ obtained by inserting the vector w. Let σ′ be a cone in F ′

which is not in F . Then σ′ ⊂ σ ∈ F , where σ′ and σ have the same
dimension and σ ⊂ τ . If v1, v2, . . . , vk are the primitive generators of
the one dimensional faces of σ, then, possibly relabelling, σ′ has primi-
tive generators w, v2, v3, . . . , vk. Let Λ′′ be the lattice spanned by these
vectors. As the image of w in N/Λ′ is non-zero and torsion, it follows
that the order of the torsion part of N/Λ′′ is smaller than r.
It follows by induction on the r and the number of cones τ such that
rτ = r, that if we repeatedly insert vectors of the form w, then we
eventually reduced to the case r = 1, in which case we have constructed
a smooth toric variety Y , together with a toric birational morphism
Y −→ X.
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