MODEL ANSWERS TO HWK #5

8.2 Given z € X, let B, C V be the subset of sections s such that
s, € mE. Note that there is a linear map

GOp: V — E/mE,

which sends a section s to its class in the quotient. B, is then the
kernel of ¢,. As V generates &, ¢, is surjective. Note that £/m,E is
a vector space of dimension r equal to the rank of £. Thus B, has
codimension r. Let B C X x V be the union of the B,. Then B is a
closed subset of X x V' (where V' is considered as an affine space). Let
p: B — X denote projection onto the first factor and q: B — V
denote projection onto the second factor. Then p is surjective with
irreducible fibres of dimension dim V' — r. It follows that B has dimen-
sion dimV —r +n < dimV. ¢(B) is a constructible subset of V. As
the dimension of B is less than the dimension of V', it follows that ¢(B)
is not dense in V.

Thus we may find s € V' which is not in B. But then s, ¢ m,&, for
every r € X. s gives rise to an exact sequence

0—0x —&—& —0,

where &’ is defined to be the quotient. As s, ¢ m,€&, it follows that &
is locally free.
8.3 (a) By virtue of (II.8.11) there is an exact sequence

x5 — QXEY/S — QX>S<Y/X — 0.

By virtue of (I1.8.10),
Qxéy/x = pafly/s.

Thus there is an exact sequence

Pifdxss — Qs — Paflyys — 0.
By symmetry there is an exact sequence

Palyss — QXEY/S — p1x/s — 0.
Composing we get a morphism of sheaves

P1€x/s = Qxéy/y — pTQX/S = Qxéy/ya
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which is the identity. Thus we have a short exact sequence

0 — piQx/s — QX;Y/S — pafdyys — 0,
and so by symmetry a short exact sequence
0— p;Qy/S — QXéy/S — pTQX/S — 0.

But then the injection in the first exact sequence defines a splitting of
the second exact sequence.

(b) We have
Qx vk = 01k © Poy i
Now take the highest wedge product of both sides to get
WX xY 2 PIWx & PoWwy.
(c) We have wp2 = Op2(—3). Thus
Wy = Wp2 (Y) = Oy,
by adjunction. It follows that wx = Ox and so p,(X) = 1. We have

Pa(Y) = (3) =1,

pa(X) = pa(Y)2 - 2pa(Y> =1-2=-1
8.4 (a) Suppose that Fi, Fy, ..., F,. € S are homogeneous polynomials
which generate I. Let H; be the hypersurface defined by F;. Let U; be
the standard open affine X; # 0. Then

F
fi: ;.7
Xj

where d; is the degree of Fj, generates the ideal of H;,NU; and fi, fo, ..., fr
generates the ideal of Y N U;. But then

Iy =1y, + Iy, +---+1y,,

and so

and so

Y=HNHN---NH,.
Now suppose that

Y=HNHyN---NH,.
We first show that the ideal of H; is principal; there are many ways to
see this. For example, the ideal sheaf is a line bundle. Tensor by H; to
get map

Opn — Opn(H;).

The last line bundle is isomorphic to Opn(d;) for some d; and the image

of 1 is a polynomial F; of degree d;.
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Let I be the ideal of Y and let J be the ideal generated by Fi, Fy, ..., F},
so that Y is the scheme associated to I and J C I. J has height r (since
Y has codimension r) and it is generated by r elements. It follows that
J is unmixed, the height of every associated prime is also r. But then
these primes correspond to irreducible components of Y and so I = J.
(b) Let X be the cone over Y. Then X is a complete intersection in
A" On the other hand, Y is regular in codimension one, as it is
normal, and so X is regular in codimension one as well (the singular
locus of X is the cone over the singular locus of V). But then X is
normal, so that Y is projectively normal.
(c) Surjectivity follows from (I1.5.14.d). If X is a projective variety
note that the dimension h°(X, Ox) of the k-vector space H°(X, Ox) is
equal to the number of connected components of X. As H°(Y, Oy) is
a quotient of HY(P", Opx) = k, it follows that Y is connected.
(d) By (c) Y is always connected. By Bertini’s theorem and induction
on r, if we choose Hy, Hy, . .., H, belonging to an open subset of | H;| x
|Hy| % - -+ x |H,| then Y is regular. As Y is regular and Y is connected
it is irreducible. But then Y is a variety so that it is smooth.
(e) Let Z be the intersection of the first » — 1 hypersurfaces. By in-
duction on 7,

r—1

Kz =) di—n—1)H|;.

i=1

By adjunction, we have

T

Ky = (Kz+Y)ly = (Kz+d,H|z)ly = () _di—n—1)Hly.

i=1
(f) In this case

oY) = BV, 0yd = 0 = 1) = (" Omid = - 1) = (1),

Here we use lower case to denote the dimension of the corresponding
cohomology group and we use the fact that the surjection

HO(P", Opu(d —n — 1)) — H(Y, Oy (d —n — 1)),

is in fact an isomorphism, as no polynomial of degree d —n — 1 vanishes
onY.

(g) Let C' =Y be the intersection of two smooth surfaces of degree d
and e. Let S be the first surface. Then there is an exact sequence

0 — H°(P? Ops(e—4)) — H°(IP?, Ops(d+e—4)) — H°(S, Og(d+e—4)) — 0.
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The first term is the space of polynomials of degree d + ¢ — 4 vanishing
on S; since any such is divisible by a polynomial of degree d, this is the
same as the space of polynomials of degree e — 4 on P3. Thus

RO(S, Os(d + e — 4)) = h*(P", Opn(d + ¢ — 4)) — h°(P", Opn (e — 4))
_(d+e—1 e—1
(704

e—1\ (e—1)(e—2)(e—3)
(57) -
does indeed vanish when e = 1, 2 or 3. There is an exact sequence

0 — H°(S,05(d—4)) — H(S, Ops(d+e—4)) — H°(C,Oc(d+e—4)) — 0.

The first term is the space of polynomials of degree d + ¢ — 4 vanishing
on C; since any such is divisible by a polynomial of degree e, this is
the same as the space of polynomials of degree d — 4 on S. Every such
is the restriction of a polynomial of degree d — 4 from P? and no such
polynomial can vanish on S. Putting all of this together we have

y(C) = BB, Opn(d + € — 4)) — hO(P", Opn(d — 4)) — hO(P", Opn (e — 4))
_ (d+§—1) - (d;l) - (6;1)

1
zide(d—i—e—l)—i—l.

Note that

8.5(a)Let U= X—Y and U = X —Y". Then U and U are isomorphic.
As Y has codimension at least two, it follows that

Cl(U) = Cl(U) = CI(X).
On the other hand, as Y” is a prime divisor, there is an exact sequence
Z — Cl(X) — CI(U) — 0.
As X and X are smooth,
Cl(X) ~Pic(X) and  CI(X) ~ Pic(X),
so that there is an exact sequence
7 — Pic(X) — Pic(X) — 0.
It is clear that the first map sends 1 to Ox/(Y”), the normal bundle of
Y’ in X'. The restriction of this to a fibre gives O(—1). Thus we have
a short exact sequence,

0 — Z —> Pic(X) — Pic(X) — 0.
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The map

7 Pic(X) — Pic(X),
which sends an invertible sheaf to its pullback defines a splitting of this
exact sequence. Thus

Pic(X') ~ Pic(X) & Z.

(b) We know that K ¢ = f*D+qY’ for some integer ¢, for some Cartier
divisor on X, by (a). Restricting to U which is isomorphic to U, we see
that D = Kx, so that K3 = f*Kx + ¢Y”’. Now let’s apply adjunction
on Y’ to get

Ky = (Kx+ Y|y = (f*Kx + (g + 1)Y")]y".

Let Z be the fibre of Y/ — Y over a closed point y € Y. The normal
bundle of Z in Y” is the pullback of the normal bundle of y in Y, so that
Nz v+ is locally free, of rank the dimension of Y. Thus by adjunction,

Kz =Kylz = (f"Kx + (¢ +1)Y")|2.

Now (f*Kx)|z = 0 (it is the pullback of a divisor from a point) and Y’
restricts to —H, the class of a hyperplane, so that K; = —(¢+ 1)H.
On the other hand, Z = P! is a toric variety, so that K, = —rH.
Comparing, we get ¢ =1 — 1.

2. X = X(F) is given by some fan F. A proper birational toric
morphism Y — X is given by repeatedly adding one dimensional rays
to F' and subdividing appropriately to get a fan G, so that Y = X (G)
is the toric variety associated to G.

Recall that if o is a cone, then the corresponding affine toric variety
U, is smooth if and only if the primitive vectors vy, v, ..., vy sSpanning
the one dimensional faces of o can be extended to a basis of the lattice
N.

The first step is to reduce to the case when every cone is simplicial,
that is, the vectors vy, vq, ..., v, are at least independent in the vector
space Nr. As the faces of a simplicial cone are simplicial, it suffices to
reduce to the case when every maximal (with respect to inclusion) cone
is simplicial. We proceed by induction on the number d of maximal
cones which are not simplicial. Suppose that ¢ is a maximal cone which
is not simplicial. Pick a vector v € N which belongs to the interior of
o. Let F' be the fan obtained from F' by inserting the ray spanned by
v, and subdividing accordingly. This has the result of subdividing o
into 0y, 09, ...,0; simplicial subcones, and otherwise leaves every other
maximal cone unchanged. It follows that F’ contains one less maximal
cone which is not simplicial. After d steps, we reduce to the case when

every cone in F' is simplicial.
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Given a simplicial cone o, let vy, v, ..., vx be the primitive generators
of its one dimensional faces. Let V' C Ng be the vector space spanned
by o (equivalently, spanned by vy, vs, ..., vx), and let

A =Zvy + Zvg + - - - + Ly,
be the lattice spanned by vy, vs,...,vr. Then the quotient
N
N
is a finitely generated abelian group. Let
r=r,,

be the cardinality of the torsion part. As noted above U, is smooth if
and only if r, = 1. Let

r = maxry,
oeF

be the maximum over all cones in F'. We proceed by induction on r.
Pick a cone 7 such that . = r, minimal (again with respect to inclu-
sion) with this property. Let vy, va,..., v be the primitive generators
of the one dimensional faces of 7. Then we may find a vector w, in
the interior of 7 and belonging to the lattice IV, whose image in N/A’,
where A’ is the lattice spanned by wvq,ve, ..., v, is torsion. Consider
the fan F’ obtained by inserting the vector w. Let ¢’ be a cone in F”’
which is not in /. Then ¢’ C o € F, where ¢’ and o have the same
dimension and o C 7. If vy, vs,..., v, are the primitive generators of
the one dimensional faces of o, then, possibly relabelling, ¢’ has primi-
tive generators w, vo, vs, . .., Vx. Let A” be the lattice spanned by these
vectors. As the image of w in N/A’ is non-zero and torsion, it follows
that the order of the torsion part of N/A” is smaller than r.

It follows by induction on the r and the number of cones 7 such that
r, = r, that if we repeatedly insert vectors of the form w, then we
eventually reduced to the case r = 1, in which case we have constructed
a smooth toric variety Y, together with a toric birational morphism
Yy — X.



