MODEL ANSWERS TO HWK \#5

8.2 Given $x \in X$, let $B_{x} \subset V$ be the subset of sections s such that $s_{x} \in \mathfrak{m}_{x} \mathcal{E}$. Note that there is a linear map

$$
\phi_{x}: V \longrightarrow \mathcal{E} / \mathfrak{m}_{x} \mathcal{E}
$$

which sends a section s to its class in the quotient. B_{x} is then the kernel of ϕ_{x}. As V generates \mathcal{E}, ϕ_{x} is surjective. Note that $\mathcal{E} / \mathfrak{m}_{x} \mathcal{E}$ is a vector space of dimension r equal to the rank of \mathcal{E}. Thus B_{x} has codimension r. Let $B \subset X \times V$ be the union of the B_{x}. Then B is a closed subset of $X \times V$ (where V is considered as an affine space). Let $p: B \longrightarrow X$ denote projection onto the first factor and $q: B \longrightarrow V$ denote projection onto the second factor. Then p is surjective with irreducible fibres of dimension $\operatorname{dim} V-r$. It follows that B has dimension $\operatorname{dim} V-r+n<\operatorname{dim} V . q(B)$ is a constructible subset of V. As the dimension of B is less than the dimension of V, it follows that $q(B)$ is not dense in V.
Thus we may find $s \in V$ which is not in B. But then $s_{x} \notin \mathfrak{m}_{x} \mathcal{E}$, for every $x \in X . s$ gives rise to an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime} \longrightarrow 0
$$

where \mathcal{E}^{\prime} is defined to be the quotient. As $s_{x} \notin \mathfrak{m}_{x} \mathcal{E}$, it follows that \mathcal{E}^{\prime} is locally free.
8.3 (a) By virtue of (II.8.11) there is an exact sequence

$$
p_{1}^{*} \Omega_{X / S} \longrightarrow \Omega_{X \times Y / S} \longrightarrow \Omega_{X \times Y / X} \longrightarrow 0 .
$$

By virtue of (II.8.10),

$$
\Omega_{X \times Y / X}=p_{2}^{*} \Omega_{Y / S} .
$$

Thus there is an exact sequence

$$
p_{1}^{*} \Omega_{X / S} \longrightarrow \Omega_{X \times Y / S} \longrightarrow p_{2}^{*} \Omega_{Y / S} \longrightarrow 0
$$

By symmetry there is an exact sequence

$$
p_{2}^{*} \Omega_{Y / S} \longrightarrow \Omega_{X \times Y / S} \longrightarrow p_{1}^{*} \Omega_{X / S} \longrightarrow 0
$$

Composing we get a morphism of sheaves

$$
p_{1}^{*} \Omega_{X / S}=\Omega_{X \times Y / Y} \longrightarrow p_{1}^{*} \Omega_{X / S}=\Omega_{X \times Y / Y}
$$

which is the identity. Thus we have a short exact sequence

$$
0 \longrightarrow p_{1}^{*} \Omega_{X / S} \longrightarrow \Omega_{X \times Y / S} \longrightarrow p_{2}^{*} \Omega_{Y / S} \longrightarrow 0
$$

and so by symmetry a short exact sequence

$$
0 \longrightarrow p_{2}^{*} \Omega_{Y / S} \longrightarrow \Omega_{X \times Y / S} \longrightarrow p_{1}^{*} \Omega_{X / S} \longrightarrow 0
$$

But then the injection in the first exact sequence defines a splitting of the second exact sequence.
(b) We have

$$
\Omega_{X \times Y / k} \simeq p_{1}^{*} \Omega_{X / k} \oplus p_{2}^{*} \Omega_{Y / k}
$$

Now take the highest wedge product of both sides to get

$$
\omega_{X \times Y} \simeq p_{1}^{*} \omega_{X} \otimes p_{2}^{*} \omega_{Y}
$$

(c) We have $\omega_{\mathbb{P}^{2}}=\mathcal{O}_{\mathbb{P}^{2}}(-3)$. Thus

$$
\omega_{Y}=\omega_{\mathbb{P}^{2}}(Y)=\mathcal{O}_{Y},
$$

by adjunction. It follows that $\omega_{X}=\mathcal{O}_{X}$ and so $p_{g}(X)=1$. We have

$$
p_{a}(Y)=\binom{2}{2}=1
$$

and so

$$
p_{a}(X)=p_{a}(Y)^{2}-2 p_{a}(Y)=1-2=-1
$$

8.4 (a) Suppose that $F_{1}, F_{2}, \ldots, F_{r} \in S$ are homogeneous polynomials which generate I. Let H_{i} be the hypersurface defined by F_{i}. Let U_{j} be the standard open affine $X_{j} \neq 0$. Then

$$
f_{i}=\frac{F_{i}}{X_{j}^{d_{i}}},
$$

where d_{j} is the degree of F_{i}, generates the ideal of $H_{i} \cap U_{j}$ and $f_{1}, f_{2}, \ldots, f_{r}$ generates the ideal of $Y \cap U_{j}$. But then

$$
\mathcal{I}_{Y}=\mathcal{I}_{H_{1}}+\mathcal{I}_{H_{2}}+\cdots+\mathcal{I}_{H_{r}},
$$

and so

$$
Y=H_{1} \cap H_{2} \cap \cdots \cap H_{r} .
$$

Now suppose that

$$
Y=H_{1} \cap H_{2} \cap \cdots \cap H_{r} .
$$

We first show that the ideal of H_{i} is principal; there are many ways to see this. For example, the ideal sheaf is a line bundle. Tensor by H_{i} to get map

$$
\mathcal{O}_{\mathbb{P}^{n}} \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}\left(H_{i}\right) .
$$

The last line bundle is isomorphic to $\mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}\right)$ for some d_{i} and the image of 1 is a polynomial F_{i} of degree d_{i}.

Let I be the ideal of Y and let J be the ideal generated by $F_{1}, F_{2}, \ldots, F_{r}$, so that Y is the scheme associated to I and $J \subset I . J$ has height r (since Y has codimension r) and it is generated by r elements. It follows that J is unmixed, the height of every associated prime is also r. But then these primes correspond to irreducible components of Y and so $I=J$. (b) Let X be the cone over Y. Then X is a complete intersection in \mathbb{A}^{n+1}. On the other hand, Y is regular in codimension one, as it is normal, and so X is regular in codimension one as well (the singular locus of X is the cone over the singular locus of Y). But then X is normal, so that Y is projectively normal.
(c) Surjectivity follows from (II.5.14.d). If X is a projective variety note that the dimension $h^{0}\left(X, \mathcal{O}_{X}\right)$ of the k-vector space $H^{0}\left(X, \mathcal{O}_{X}\right)$ is equal to the number of connected components of X. As $H^{0}\left(Y, \mathcal{O}_{Y}\right)$ is a quotient of $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right)=k$, it follows that Y is connected.
(d) By (c) Y is always connected. By Bertini's theorem and induction on r, if we choose $H_{1}, H_{2}, \ldots, H_{r}$ belonging to an open subset of $\left|H_{1}\right| \times$ $\left|H_{2}\right| \times \cdots \times\left|H_{r}\right|$ then Y is regular. As Y is regular and Y is connected it is irreducible. But then Y is a variety so that it is smooth.
(e) Let Z be the intersection of the first $r-1$ hypersurfaces. By induction on r,

$$
K_{Z}=\left.\left(\sum_{i=1}^{r-1} d_{i}-n-1\right) H\right|_{Z}
$$

By adjunction, we have

$$
K_{Y}=\left.\left(K_{Z}+Y\right)\right|_{Y}=\left.\left(K_{Z}+\left.d_{r} H\right|_{Z}\right)\right|_{Y}=\left.\left(\sum_{i=1}^{r} d_{i}-n-1\right) H\right|_{Y}
$$

(f) In this case

$$
p_{g}(Y)=h^{0}\left(Y, \mathcal{O}_{Y}(d-n-1)\right)=h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d-n-1)\right)=\binom{d-1}{n}
$$

Here we use lower case to denote the dimension of the corresponding cohomology group and we use the fact that the surjection

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d-n-1)\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(d-n-1)\right)
$$

is in fact an isomorphism, as no polynomial of degree $d-n-1$ vanishes on Y.
(g) Let $C=Y$ be the intersection of two smooth surfaces of degree d and e. Let S be the first surface. Then there is an exact sequence

$$
0 \longrightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(e-4)\right) \longrightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d+e-4)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(d+e-4)\right) \longrightarrow 0
$$

The first term is the space of polynomials of degree $d+e-4$ vanishing on S; since any such is divisible by a polynomial of degree d, this is the same as the space of polynomials of degree $e-4$ on \mathbb{P}^{3}. Thus

$$
\begin{aligned}
h^{0}\left(S, \mathcal{O}_{S}(d+e-4)\right) & =h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d+e-4)\right)-h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(e-4)\right) \\
& =\binom{d+e-1}{3}-\binom{e-1}{3}
\end{aligned}
$$

Note that

$$
\binom{e-1}{3}=\frac{(e-1)(e-2)(e-3)}{3}
$$

does indeed vanish when $e=1,2$ or 3 . There is an exact sequence
$0 \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(d-4)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{\mathbb{P}^{3}}(d+e-4)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}(d+e-4)\right) \longrightarrow 0$.
The first term is the space of polynomials of degree $d+e-4$ vanishing on C; since any such is divisible by a polynomial of degree e, this is the same as the space of polynomials of degree $d-4$ on S. Every such is the restriction of a polynomial of degree $d-4$ from \mathbb{P}^{3} and no such polynomial can vanish on S. Putting all of this together we have

$$
\begin{aligned}
p_{g}(C) & =h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d+e-4)\right)-h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d-4)\right)-h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(e-4)\right) \\
& =\binom{d+e-1}{3}-\binom{d-1}{3}-\binom{e-1}{3} \\
& =\frac{1}{2} d e(d+e-1)+1
\end{aligned}
$$

8.5 (a) Let $U=X-Y$ and $\tilde{U}=\tilde{X}-Y^{\prime}$. Then U and \tilde{U} are isomorphic.

As Y has codimension at least two, it follows that

$$
\mathrm{Cl}(\tilde{U})=\mathrm{Cl}(U)=\mathrm{Cl}(X)
$$

On the other hand, as Y^{\prime} is a prime divisor, there is an exact sequence

$$
\mathbb{Z} \longrightarrow \mathrm{Cl}(\tilde{X}) \longrightarrow \mathrm{Cl}(\tilde{U}) \longrightarrow 0
$$

As X and \tilde{X} are smooth,

$$
\mathrm{Cl}(X) \simeq \operatorname{Pic}(X) \quad \text { and } \quad \mathrm{Cl}(\tilde{X}) \simeq \operatorname{Pic}(\tilde{X})
$$

so that there is an exact sequence

$$
\mathbb{Z} \longrightarrow \operatorname{Pic}(\tilde{X}) \longrightarrow \operatorname{Pic}(X) \longrightarrow 0 .
$$

It is clear that the first map sends 1 to $\mathcal{O}_{X^{\prime}}\left(Y^{\prime}\right)$, the normal bundle of Y^{\prime} in X^{\prime}. The restriction of this to a fibre gives $\mathcal{O}(-1)$. Thus we have a short exact sequence,

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \operatorname{Pic}(\tilde{X}) \longrightarrow \operatorname{Pic}(X) \longrightarrow 0 .
$$

The map

$$
\pi^{*}: \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\tilde{X})
$$

which sends an invertible sheaf to its pullback defines a splitting of this exact sequence. Thus

$$
\operatorname{Pic}\left(X^{\prime}\right) \simeq \operatorname{Pic}(X) \oplus \mathbb{Z}
$$

(b) We know that $K_{\tilde{X}}=f^{*} D+q Y^{\prime}$ for some integer q, for some Cartier divisor on X, by (a). Restricting to \tilde{U} which is isomorphic to U, we see that $D=K_{X}$, so that $K_{\tilde{X}}=f^{*} K_{X}+q Y^{\prime}$. Now let's apply adjunction on Y^{\prime}, to get

$$
K_{Y^{\prime}}=\left.\left(K_{X^{\prime}}+Y^{\prime}\right)\right|_{Y^{\prime}}=\left.\left(f^{*} K_{X}+(q+1) Y^{\prime}\right)\right|_{Y^{\prime}} .
$$

Let Z be the fibre of $Y^{\prime} \longrightarrow Y$ over a closed point $y \in Y$. The normal bundle of Z in Y^{\prime} is the pullback of the normal bundle of y in Y, so that $N_{Z / Y^{\prime}}$ is locally free, of rank the dimension of Y. Thus by adjunction,

$$
K_{Z}=\left.K_{Y^{\prime}}\right|_{Z}=\left.\left(f^{*} K_{X}+(q+1) Y^{\prime}\right)\right|_{Z}
$$

Now $\left.\left(f^{*} K_{X}\right)\right|_{Z}=0$ (it is the pullback of a divisor from a point) and Y^{\prime} restricts to $-H$, the class of a hyperplane, so that $K_{Z}=-(q+1) H$. On the other hand, $Z=\mathbb{P}^{r-1}$ is a toric variety, so that $K_{Z}=-r H$. Comparing, we get $q=r-1$.
2. $\quad X=X(F)$ is given by some fan F. A proper birational toric morphism $Y \longrightarrow X$ is given by repeatedly adding one dimensional rays to F and subdividing appropriately to get a fan G, so that $Y=X(G)$ is the toric variety associated to G.
Recall that if σ is a cone, then the corresponding affine toric variety U_{σ} is smooth if and only if the primitive vectors $v_{1}, v_{2}, \ldots, v_{k}$ spanning the one dimensional faces of σ can be extended to a basis of the lattice N.
The first step is to reduce to the case when every cone is simplicial, that is, the vectors $v_{1}, v_{2}, \ldots, v_{k}$ are at least independent in the vector space $N_{\mathbb{R}}$. As the faces of a simplicial cone are simplicial, it suffices to reduce to the case when every maximal (with respect to inclusion) cone is simplicial. We proceed by induction on the number d of maximal cones which are not simplicial. Suppose that σ is a maximal cone which is not simplicial. Pick a vector $v \in N$ which belongs to the interior of σ. Let F^{\prime} be the fan obtained from F by inserting the ray spanned by v, and subdividing accordingly. This has the result of subdividing σ into $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ simplicial subcones, and otherwise leaves every other maximal cone unchanged. It follows that F^{\prime} contains one less maximal cone which is not simplicial. After d steps, we reduce to the case when every cone in F is simplicial.

Given a simplicial cone σ, let $v_{1}, v_{2}, \ldots, v_{k}$ be the primitive generators of its one dimensional faces. Let $V \subset N_{\mathbb{R}}$ be the vector space spanned by σ (equivalently, spanned by $v_{1}, v_{2}, \ldots, v_{k}$), and let

$$
\Lambda=\mathbb{Z} v_{1}+\mathbb{Z} v_{2}+\cdots+\mathbb{Z} v_{k}
$$

be the lattice spanned by $v_{1}, v_{2}, \ldots, v_{k}$. Then the quotient

$$
\frac{N}{\Lambda}
$$

is a finitely generated abelian group. Let

$$
r=r_{\sigma},
$$

be the cardinality of the torsion part. As noted above U_{σ} is smooth if and only if $r_{\sigma}=1$. Let

$$
r=\max _{\sigma \in F} r_{\sigma}
$$

be the maximum over all cones in F. We proceed by induction on r. Pick a cone τ such that $r_{\tau}=r$, minimal (again with respect to inclusion) with this property. Let $v_{1}, v_{2}, \ldots, v_{l}$ be the primitive generators of the one dimensional faces of τ. Then we may find a vector w, in the interior of τ and belonging to the lattice N, whose image in N / Λ^{\prime}, where Λ^{\prime} is the lattice spanned by $v_{1}, v_{2}, \ldots, v_{l}$, is torsion. Consider the fan F^{\prime} obtained by inserting the vector w. Let σ^{\prime} be a cone in F^{\prime} which is not in F. Then $\sigma^{\prime} \subset \sigma \in F$, where σ^{\prime} and σ have the same dimension and $\sigma \subset \tau$. If $v_{1}, v_{2}, \ldots, v_{k}$ are the primitive generators of the one dimensional faces of σ, then, possibly relabelling, σ^{\prime} has primitive generators $w, v_{2}, v_{3}, \ldots, v_{k}$. Let $\Lambda^{\prime \prime}$ be the lattice spanned by these vectors. As the image of w in N / Λ^{\prime} is non-zero and torsion, it follows that the order of the torsion part of $N / \Lambda^{\prime \prime}$ is smaller than r.
It follows by induction on the r and the number of cones τ such that $r_{\tau}=r$, that if we repeatedly insert vectors of the form w, then we eventually reduced to the case $r=1$, in which case we have constructed a smooth toric variety Y, together with a toric birational morphism $Y \longrightarrow X$.

