
MODEL ANSWERS TO HWK #4

1. (i) It suffices to check that the determinant of the primitive gener-
ators of every maximal cone is one or minus one. The maximal cones
are given by

〈v1, v2, v3〉 〈v1, v2, v4〉 〈v2, v4, v5〉 〈v2, v3, v5〉
〈v3, v5, v6〉 〈v1, v3, v6〉 〈v1, v4, v6〉 〈v4, v5, v7〉
〈v4, v6, v7〉 〈v5, v6, v8〉 〈v5, v7, v8〉 〈v6, v7, v8〉,

and probably the most sensible way to compute the determinants is to
use a computer algebra system.
(ii) As |D| is base point free, it contains a T -Cartier divisor D′ ≥ 0.
Replacing D by D′, we may assume that D ≥ 0 and we will show that
then D = 0. Suppose that D =

∑
diDi.

Let φ = φD be the continuous, piecewise linear integral function as-
sociated to D. As v5 = v2 + v4 − v1, 〈v1, v2, v4〉 is a cone and φ is
convex

d1 + d5 ≥ d2 + d4.

As v2 + v6 = 2(v3 + v5), 〈v2, v3, v5〉 is a cone and φ is convex,

d2 + d6 ≥ 2(d3 + d5).

Finally, as v3 + v4 = 2v1 + v6, 〈v1, v3, v6〉 is a cone and φ is convex,

d3 + d4 ≥ 2d1 + d6.

Adding these inequalities together we get

d1 + d2 + d3 + d4 + d5 + d6 ≥ 2d1 + d2 + 2d3 + d4 + 2d5 + d6.

As di ≥ 0, it follows that d1 = d3 = d5 = 0. By the first inequality,
d2 = d4 = 0 (and by the last inequality d6 = 0). As every vector in R3

is a positive linear combination of v1, v2, v3, v4 and v5, it follows that
the polytope PD associated to D is the zero polytope. As D is base
point free this is only possible if D = 0.
(iii) Clear, since if X is projective then there is a very ample divisor
on X which is not linearly equivalent to zero.
7.8 A section σ : X −→ P(E) is the same as a morphism of X to P(E)
over X. But we already know that this is the same as the data of an
invertible sheaf L and a surjective morphism E −→ L.
7.9 (a) As stated this result is trivially false. Take X be the disjoint
union of two points, then P is the disjoint union of two copies of Pn
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and the Picard group of P is Z ⊕ Z, not Z. So we assume that X is
connected.
Let P = P(E). It is sufficient to prove that

Pic(P ) = π∗ Pic(X)⊕ Z〈OP (1)〉.
Note that if L is any invertible sheaf on X then π∗L restricts to the
trivial line bundle on any fibre. Since Pic(Pn) = Z is generated by
OPn(1), it follows that if π∗L(k) ' OP , then k = 0. But

π∗π
∗L = L ⊗ π∗OP = L,

by push-pull, so that L ' OP . Thus the RHS is a subgroup of the
LHS.
To finish off, we need to prove that if we have an invertible sheafM on
P which restricts to the trivial sheaf on one fibre then it is the pullback
of a sheaf from X. Now if P = X×Pn and X is regular and separated,
then

Cl(P ) ' Cl(X)× Z.
As X is regular and X is separated, Cartier divisors are the same as
Weil divisors, and so

Pic(P ) = π∗ Pic(X)× Z.
Hence ifM is trivial over the point p then there is an open neighbour-
hood of p such thatM restricts to the trivial line bundle on every fibre.
As X is connected, it follows thatM is trivial on every fibre. By what
we just observed this implies that M is locally the pullback of a line
bundle. Let L = π∗M. Then L is a line bundle, since we can check
this locally. Consider the induced morphism of line bundles

π∗L −→M.

This morphism is surjective, since it is surjective locally and so it is an
isomorphism.
(b) One direction is easy. If E ′ = E ⊗ L then S ′ = S ? L and we have
already seen that P and P ′ are isomorphic over X.
Now suppose that P and P ′ are isomorphic over X. As

OP ′(1) ∈ Pic(P ′) ' Pic(P ),

by what we have already proved

OP ′(1) ' π∗L ⊗OP (k),

for some line bundle on X and some integer k. Restricting to a fibre,
it follows easily that k = 1. If we push this equation down to X we get

E ′ ' E ⊗ L,
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by push-pull.
7.10 (a) A projective n-space bundle over X is a morphism of
schemes π : P −→ X together with an open cover {Ui} and isomor-
phisms ψi : π

−1(Ui) −→ PnUi
such that for every open affine V =

SpecA ⊂ Ui ∩Uj the automorphism ψ = ψj ◦ψ−1i : PnV −→ PnV is given
by a linear automorphism θ of A[x0, x1, . . . , xn], that is, θ(a) = a for
every a ∈ A and θ(xi) =

∑
aijxj for suitable constants (aij).

A isomorphism of two projective space bundles (P, π, {Ui}, {ψi}) and
(P ′, π′, {U ′i}, {ψ′i}) is an isomorphism of P to P ′ over X, such that over

any affine subset V ⊂ Ui∩U ′j the induced automorphism ψ = ψi∩ψ
′−1
j

is given by a linear automorphism θ of A[x0, x1, . . . , xn].
(b) By assumption there is an open cover {Ui} such that E|Ui

is free of
rank n+ 1. In this case P(E|Ui

) = PnUi
. By assumption, if V ⊂ Ui ∩ Uj

then the induced linear map of affine bundles is linear.
(c) As in the hint, pick an open subset U over which P is isomorphic
to PnU and let L0 be OPn

U
(1). Let H0 ⊂ PnU be a hyperplane and let H

be its closure in P . Then H has codimension one in P . As X is locally
separated, and X is regular, in fact H defines a Cartier divisor. Let
L = OP (H) be the associated invertible sheaf. Clearly L|π−1(U) = L0.
Arguing as in (7.9) (a) it follows that L restricts to O(1) on every fibre.
Let E = π∗L. Then E is locally free of rank n + 1. Indeed this can be
checked locally, in which case P is a product and the result is clear.
Let P ′ = P(E). Now there is a morphism

π∗E −→ L,
which is surjective, as this can be checked locally. But then there is a
morphism P −→ P ′ over X. But then this map is an isomorphism, as
it is an isomorphism locally over X.
(d) Easy consequence of (7.9) (b), (b) and (c).
7.11 (a) By the universal property, it suffices to check this locally. So we
may assume that X = SpecA is an affine scheme. Let I = H0(X, I).
Then Y = ProjS, where

S =
∞⊕
m=0

Im.

and Y ′ = ProjS(d). But we have already seen that Y and Y ′ are then
isomorphic over X.
(b) One way to prove this is to observe that

S ′ = S ? J .
Another is to observe that if g : Z −→ X is any morphism then

g−1(I · J ) · OZ = (g−1I · OZ) · (g−1J · OZ).
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Since
g−1J · OZ ,

is always an invertible sheaf, it follows that

g−1(I · J ) · OZ ,
is an invertible sheaf if and only if

g−1I · OZ ,
is an invertible sheaf. But then the blow up of I and the blow up of
I · J satisfy the same universal property, so that they are isomorphic.
(c) Pick a very ample divisor H on Z, whose support does not contain
any fibre of f . Let D = π(H). Then a priori D determines a Weil
divisor but as X is regular it is a Cartier divisor. Then H is equal
to the strict transform of D, so that E = π∗D − H ≥ 0 and E is
exceptional for f (that is, its image has codimension at least two).
By assumption −E is relatively very ample. Let I = f∗OZ(−E). Then
I ⊂ OX is a coherent OX-module, that is, a coherent ideal sheaf. As
E is relatively very ample, the morphism of sheaves

f ∗f∗OX(−E) −→ OZ(−E),

is surjective. It follows that

f−1I · OZ −→ OZ(−E),

is surjective. As f−1I · OZ is a coherent ideal sheaf, it follows that
f−1I · OZ = OZ(−E). In particular f−1I · OZ is an invertible sheaf.
As

Z = Proj
∞⊕
m=0

π∗OZ(−mE) = Proj
∞⊕
m=0

Im,

it follows that Z is the blow up of I. Let V be the image of E. Then
the subscheme of X defined by I is supported on V . On the other
hand, V is contained in X − U as E is a divisor and V is not.
7.12. Presumably this question should be slightly reworded to say that
no irreducible component of Y is contained in an irreducible component
of Z and vice-versa.
This problem is local (see above), so we might as well assume that
X = SpecA is affine. In this case Y and Z are defined by ideals I and
J . Let K = I + J the ideal of the intersection. Then

Y = ProjS =
∞⊕
d=0

Kd,

is the blow up of Y ∩Z. We just need to check that the strict transforms
Ỹ and Z̃ of Y and Z don’t intersect on the exceptional divisor of
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the blow up. Pick generators a1, a2, . . . , an for the ideal K. We may
suppose that a1, a2, . . . , am are generators of the ideal I and that the
rest generate the ideal J . This defines a surjective ring homomorphism

φ : A[x1, x2, . . . , xn] −→ S,

of graded rings, just by sending xi to ai. The defines a closed embedding
Y ⊂ PnA. Note that the kernel of φ contains the polynomials ajxi−aixi.
Suppose we are given a point p of Y −Y ∩Z. Then we may find j > m
such that ai does not vanish at p. If i ≤ m then xi must vanish in the
fibre over p since ai vanishes but aj does not. Therefore x1, x2, . . . , xm
vanish on Ỹ , since this is the closure of the inverse image of Y −Y ∩Z
and by symmetry the rest of the variables vanish on Z̃. But then Ỹ
and Z̃ don’t intersect.
7.13. (a) Let U0 and U1 be the two standard open affine subsets of P1.
Define two morphisms,

C × U0 −→ C × U0 and C × U0 − {[1 : 0]} −→ C × U0,

where the first morphism is the identity and the second morphism is
given by (P, u) −→ (φu(P ), u). These two morphisms glue to a mor-
phism π−1(U0) −→ C ×U0, which is easily seen to be an isomorphism.
Hence π−1(Ui) ' C×Ui and π is nothing more than projection onto the
second factor. As properness is local on the base, π is certainly proper.
As the composition of proper morphisms is proper, X is complete.
(b) Let π : Ỹ −→ Y be the normalisation of a variety Y . As π is
birational π∗KỸ = K. Thus there is a natural surjective morphism of
sheaves

K∗ −→ K∗/π∗O∗Ỹ .
As

OY ⊂ π∗OỸ ,
this induces a surjective morphism

K∗/O∗Y −→ K∗/π∗O∗Ỹ .
Hence there is a sequence

0 −→ π∗O∗Ỹ /O
∗
Y −→ K∗/O∗Y −→ K∗/π∗O∗Ỹ −→ 0,

which is clearly exact, as it is exact on stalks. If we take global sections,
then we get an exact sequence

0 −→ H0(Y, π∗O∗Ỹ /O
∗
Y ) −→ H0(Y,K∗/O∗Y ) −→ H0(Y,K∗/π∗O∗Ỹ ).

For the third term we have

H0(Y,K∗/π∗O∗Ỹ ) = H0(Ỹ ,K∗/O∗
Ỹ

).
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So the second and third terms are nothing but the group of Cartier
divisors on Y and Ỹ . If we mod out by linear equivalence, that is, by
the group

H0(Y,K∗),
then the second and third terms become the Picard groups of Y and
Ỹ . So there is an exact sequence

0 −→ H0(Y, π∗O∗Ỹ /O
∗
Y ) −→ Pic(Y ) −→ Pic(Ỹ ).

We apply this in two situations, to Y = C×A1 and Y = C×(A1−{0}).
In both cases Pic(Ỹ ) = Z, since in the first case Ỹ = P1 × A1 and in
the second case Ỹ = P1 × (A1 − {0}). Consider

H0(Y, π∗O∗Ỹ /O
∗
Y ).

The sheaf

π∗O∗Ỹ /O
∗
Y ,

is supported on p × A1, or p × (A1 − {0}), as appropriate, where p is
the node. As a sheaf on A1 it is isomorphic to O∗A1 . As observed in the
hint,

H0(A1,O∗A1) = Gm and H0(A1 − {0},O∗A1) = Gm × Z.

Thus

Pic(C × A1) = Gm × Z and Pic(C × (A1 − {0})) = Gm × Z2.

(c) Projection C × A1 −→ C to the first factor defines a map on
invertible sheaves by pullback, which induces an isomorphism

Pic(C) ' Pic(C × A1).

Similarly pullback defines an injective map

Pic(C) −→ Pic(C × (A1 − {0})),
which sends 〈t, n〉 to 〈t, 0, n〉. Thus the natural restriction map

Pic(C × A1) −→ Pic(C × (A1 − {0})),
has the same form. Now let us consider the action of φ, on Pic(Y ),

φ∗ : Pic(Y ) −→ Pic(Y ).

It suffices to determine

φ∗(t, 0, 0), φ∗(0, 1, 0) and φ(0, 0, 1).

As Gm is a connected algebraic group and Z is a discrete group, every
group homomorphism

Gm −→ Z,
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is trivial. On the other hand, multiplication by a ∈ Gm induces the
identity on Pic(C). It is not hard to see from this that

φ∗(t, 0, 0) = 〈t, 0, 0〉.
Now the isomorphism

H0(Y, π∗O∗Ỹ /O
∗
Y ) ' H0(A1 − {0},O∗A1),

sends f ∈ O∗
Ỹ

to the ratio of f at the two points p0 = [1 : 0] and
p1 = [0 : 1] lying over p. The line bundle 〈0, 1, 0〉 corresponds to f
which takes on the value u at p0 and 1 at p1. The action of φ fixes f
and from this it is clear that

φ∗(0, 1, 0) = 〈0, 1, 0〉.
Finally consider the line bundle corresponding to 〈0, 0, 1〉. This corre-
sponds to the line bundle OP1(1) on P1, pulled back to Ỹ = P1× (A1−
{0}). The corresponding line bundle is given by x on U0 × (A1 − {0})
and 1 on U1×(A1−{0}). Applying φ we get ux on U0×(A1−{0}) and
1 on U1 × (A1 − {0}). The line bundle with these transition functions
is 〈0, 1, 1〉. Putting all of this together, we see that

φ∗(t, d, n) = 〈t, d+ n, n〉.
(d) Let L be an invertible sheaf on X. If we restrict L to C × U0 then
we get an element 〈t, n〉 of Pic(C × U0) and if we restrict to C × U1

then we get another element 〈s,m〉 of Pic(C × U1). Their images in
Pic(C× (U0∩U1)) are 〈t, 0, n〉 and 〈s,m,m〉. Since these are supposed
to agree, we must have s = t and m = n = 0. But then the restriction
of L to C × {0} has degree zero, so L cannot be ample. In particular
X is not projective over k and π is not projective.
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