
MODEL ANSWERS TO HWK #3

1. Let K be the field of fractions of A. Then

K =
k(x1, x2, . . . , xn)[z]

〈z2 − f〉
.

This is a quadratic extension of the field L = k(x1, x2, . . . , xn). As the
characteristic is not 2, K is the splitting field of z2 − f so that K/L is
Galois, with Galois group Z/2Z given by the involution z −→ −z.
Every element α of K is uniquely of the form g + hz, where g and
h ∈ k(x1, x2, . . . , xn). Then the conjugate β of α is g − hz so that

(X − α)(X − β) = X2 − (α + β)X + (αβ) = X2 − 2gX + (g2 − h2f),

is the minimal polynomial of α. α is in the integral closure of k[x1, x2, . . . , xn]
inside K if and only if 2g and g2 − h2f ∈ k[x1, x2, . . . , xn]. But
2g ∈ k[x1, x2, . . . , xn] if and only if g ∈ k[x1, x2, . . . , xn]. In this case
g2 − h2f ∈ k[x1, x2, . . . , xn] if and only if h2f ∈ k[x1, x2, . . . , xn]. As
f is square free and k[x1, x2, . . . , xn] is a UFD this happens if and
only if h ∈ k[x1, x2, . . . , xn]. But then A is the integral closure of
k[x1, x2, . . . , xn].
In particular A is integrally closed.
2. (a) Note that if r ≥ 2 then x20 + x21 + x22 + · · ·+ x2r is irreducible, as
the characteristic is not two. In particular it is square free and we may
apply (II.6.4).
(b) As k is algebraically closed there is an element i such that i2+1 = 0.
Consider the change of variables which replaces x0 by ix0 and fixes the
other variables. This has the effect of replacing

x20 + x21 + x22 + · · ·+ x2r by − x20 + x21 + x22 + · · ·+ x2r.

Now consider the change of variables which sends

2x0 −→ x0 + x1 and 2x1 −→ x0 − x1,
and fixes the other variables. As

x21 − x20 = (x0 + x1)(x1 − x0),
this has the effect of replacing

−x20 + x21 + x22 + · · ·+ x2r by x0x1 + x22 + · · ·+ x2r.

Finally multiplying x0 by −1 we can put the equation for X into the
form

x0x1 = x22 + · · ·+ x2r.
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(1) We have x0x1 = x22. This is essentially done in example (II.6.5.2)
and we closely follow the treatment there. Let L be the linear space
x1 = x2 = 0 in An+1

k and let U = X −L. As L is a prime divisor in X,
we have

Z −→ Cl(X) −→ Cl(U) −→ 0.

Now 2L is Cartier, defined by x1 = 0; if x1 = 0 then x22 = 0 and x2 has
multiplicity one along L. It follows that

U = Spec
k[x0, x1, x2, . . . , xn]x1
〈x0x1 − x22〉

= Spec k[x1, x
−1
1 , x2, x3, . . . , xn]

' Gm × An−1
k ,

since we may write x0 = x−11 x22 in the ring k[x0, x1, x2, . . . , xn]x1 . Hence
Cl(U) = 0.
It remains to show that L is not Cartier. This is equivalent to showing
that the ideal p = 〈x1, x2〉 is not principal. Let m = 〈x0, x1, x2〉 be the
maximal ideal of the vertex of the cone. Then p ⊂ m and the image of
p inside the quotient

m

m2
,

is two dimensional, as the images x1 and x2 are independent. Thus p
is not principal and Y is not Cartier.
(2) We have x0x1 = x22 + x23. Then X = Y × An−4

k where Y ⊂ A4
k has

the same equation. So we may assume that n = 3.
Let V ⊂ P3

k be the quadric with equation X0X1 = X2
2 + X2

3 . Then
V ' P1×P1 and by (II.6.6.1) Cl(V ) = Z⊕Z. By (II.6.3.b) there is an
exact sequence

0 −→ Z −→ Cl(V ) −→ Cl(X) −→ 0,

where the first map sends 1 to a hyperplane section of Cl(V ). The
image of 1 is therefore (1, 1) ∈ Z⊕ Z and the quotient is Z.
(3) Note that the hyperplane x1 = 0 intersects X in the closed set
Z defined by x22 + x23 + · · · + x2r, which is irreducible. Let U be the
complement. Consider projection down to Pn−1k , from the point [1 : 0 :
0 : · · · : 0]. Let V ' An−1

k ⊂ Pn−1k be the standard open subset where
X1 6= 0. Given [a1 : a2 : · · · : an] ∈ V , note that there is a unique point

a0 =
−1

a1
(a22 + a23 + . . . a2n),

such that [a0 : a1 : · · · : an] ∈ U projects down to V . It follows easily
that V ' U = An−1

k . In particular Cl(U) = 0. On the other hand
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Z is linearly equivalent to zero so that Cl(X) = 0 by the usual exact
sequence.
(c) Using (II.6.3.a) n− r times, we reduce to the case when r = n.
(1) In this case, we have a smooth conic in P2

k. Any such is isomorphic
to P1

k (stereographic projection) and so Pic(Q) = Z. It is clear that a
line in P2

k intersects the conic in two points.
(2) This is (II.6.6.1).
(3) By (II.6.3.b) there is an exact sequence

0 −→ Z −→ Cl(Q) −→ Cl(X) −→ 0.

The last group is zero, so that Cl(Q) ' Z.
(d) We already know that the homogeneous coordinate ring of Q is
integrally closed and that the class group of the corresponding affine
variety is zero. It follows that the homogeneous coordinate ring of Q
is a UFD by (II.6.2).
Let I be the ideal of Y in Pnk . Then I contains a homogeneous poly-
nomial F which is not a multiple of X2

0 + X2
1 + · · · + X2

r . Let f be
the image of F inside the homogeneous coordinate ring S(Q). We may
factor f as fa11 . . . famm , where f1, f2, . . . , fm are homogeneous and irre-
ducible. As Y is irreducible, one of the factors, say f1 vanishes on Y .
As f1 is irreducible, its zero locus is irreducible and reduced, so that
the zero locus of f1 is Y , as a scheme.
Suppose that F1 is a homogeneous polynomial which represents f1. Let
V be the hypersurface defined by F1. Then V ∩ Q = Y , by choice of
f1.
3. (b) We may assume that r = n.
(1) Let σ ⊂ R2 be the cone spanned by 2e1 − e2 and e2. Then

Uσ = Spec
K[u, v, w]

〈v2 − uw〉
.

We have already seen that the class group is Z2 in class.
(2) Note that x0x1 = x22 + x23 is equivalent to x0x1 = x2x3. If r = 3
we have the cone spanned by four vectors v1, v2, v3 and v4 such that
v1 + v3 = v2 + v4 and any three vectors span the lattice N . Let D1, D2,
D3 and D4 be the four invariant divisors corresponding to v1, v2, v3
and v4. We may take v1 = e1, v2 = e2, v3 = e3, so that v4 = e1+e3−e2.
We have an exact sequence

0 −→M −→ Z4 −→ Cl(X) −→ 0,

where M = Z3. Let x = χ(1,0,0), y = χ(0,1,0) and z = χ(0,0,1). Then

(x) = D1 +D4 (y) = D2 −D4 and (z) = D3 +D4.
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Thus D1, D2 and D3 are all multiples of D4, so that the class group is
Z.
(c) Arguing as before, we may assume that r = n. The case r = 2 is
easy, we have P1.
If r = 3, then let F be the cone with support R2, given by the three
vectors v1 = e1, v2 = e2 and v3 = −2e1−e2. We have already seen that
in a previous hwk that this gives the quadric cone in P3. As usual there
are three invariant divisors D1, D2 and D3, corresponding to the three
vectors v1, v2 and v3. Computing as usual, there are two relations

D1 − 2D3 = 0 and D2 −D3 = 0.

So every divisor is a multiple of D3 and the class group is Z.
4. There are many ways to prove this result. Just for practice, let’s use
the language of continuous, piecewise integral linear functions. We will
also make some standard reductions, some of which are superfluous.
As every Weil divisor is linearly equivalent to an invariant Weil divisor,
it suffices to check that every invariant Weil divisor is Q-Cartier if and
only if every cone is simplicial.
As this result is local, we may assume that X = Uσ is an affine toric
variety. In this case it is enough to check when σ is simplicial, since
every face of a simplicial cone is simplicial. If σ does not span NR then
Uσ = Uτ × Gk

m, for some affine toric variety Uτ . In this case the class
group of Uσ is equal to the class group of Uτ . So we may assume that
σ spans NR. Let v1, v2, . . . , vm be the primitive generators of the one
dimensional faces of σ. Then m ≥ n and σ is simplicial if and only if
m = n.
As X = Uσ is an affine toric variety, T -Cartier divisors correspond to
integral linear functions φ : σ −→ R (note that we can drop the word
piecewise, so that we can drop the word continuous).
Suppose that m = n. Given an invariant Weil divisor D =

∑
aiDi,

consider the vectors w1, w2, . . . , wn, where wi = vi/ai. These belong
to an affine hyperplane H ⊂ NR = Rn, which does not contain the
origin. Let φ : σ −→ R be the linear function which takes the value 1
on H. Then φ(vi) = ai and there is a postive integer m such that mφ
is integral. Thus D is T -Cartier and so X is Q-factorial.
Now suppose that X is Q-factorial. Suppose that m > n. Then
v1, v2, . . . , vm are linearly dependent. Suppose that

∑
λivi = 0.
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We may suppose that λ1, λ2, . . . , λm are rational. Clearing denomina-
tors, we may assume that λ1, λ2, . . . , λm are integers. Possibly rela-
belling, we may assume that

amvm =
∑

aivi,

where am 6= 0 and a1, a2, . . . , am−1 are integers. Let D =
∑

i≤m−1 aiDi.
If φ is a linear function such that φ(vi) = −ai then φ(vm) = −am. So
no multiple of D is Cartier.
5. (a) We just have to show that if L andM are two invertible sheaves
then

f ∗(L ⊗
OX

M) ' f ∗L ⊗
OY

f ∗M

We exhibit an isomorphism of OY -modules

f ∗(L ⊗
OX

M) −→ f ∗L ⊗
OY

f ∗M.

By the adjoint property of f∗ and f ∗ (see page 110 of Hartshorne), it
suffices to exhibit an isomorphism of OX-modules

L ⊗
OX

M−→ f∗(f
∗L ⊗
OY

f ∗M).

Such an isomorphism is given by the projection formula, see (II.5.1.iv).
(b) Since both maps are linear, it suffices to check that if q ∈ Y is a
closed point then

f ∗OY (q) ' OX(f ∗q).

Both sides live naturally inside K, the sheaf of total quotient rings on
X. In this case case we just want to check that

f ∗OY (q) = OX(f ∗q),

as subsheaves of K.
We check this stalk by stalk. If p ∈ X is a point not in the fibre of q
then both sides are the stalk of the sheaf of regular functions OX,p, so
that equality is clear. Now suppose that f(p) = q. Note that OY,q(q)
is the set of rational functions of the form utm, where u is a unit, t
is a local parameter and m ≥ −1. If the image of t in OX,p is sa,
where s is a local parameter in OX,p, then the image of utm is usam, so
that OX,p(f ∗q) corresponds to rational functions with a pole no worse
than a at p. It is easy to check that the LHS corresponds to the same
rational functions.
(c) Again by linearity, we just have to check what happens to OPn

k
(1).

Let H ⊂ Pnk be a hyperplane which does not contain X. This cor-
responds to a linear function L. Then the restriction l of L to X
is a global section of OX(1), whose zero locus is the Cartier divisor
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Y = H ∩X. The underlying Weil divisor is clearly the one defined in
(II.6.2).
6. (i) Since tensor product commutes with i∗, we might as well assume
that X = C is a smooth projective curve. Suppose that L and M are
two line bundles on C. Then we may find Cartier divisors D and E
such that L = OC(D) and M = OC(E). In this case

L ⊗
OC

M = OC(D + E).

Finally, clearly the degree of D+E is the sum of the degrees of D and
E.
(ii) Using (i), we may replace L by L⊗m and so we might as well assume
that L is base point free. Suppose that C ⊂ X is a projective curve and
let i : C ′ −→ X be the composition of the normalisation and inclusion.
Then i∗L is base point free. So we might as well assume that X = C
is a smooth projective curve. Pick a global section s of L. Then
D = (s) ≥ 0 and the degree of L is the degree of D which is surely
non-negative.
(iii) By (i) we may assume that L is very ample, so that L = OX(1),
where X ⊂ PnK . Suppose that C ⊂ X is a projective curve. Then
OX(1) · C = OPn

K
(1) · C. So we might as well assume that X = PnK .

In this case, zeroes of sections of OPn
K

(1) correspond to hyperplanes in
Pn. Given C, pick a hyperplane H which does not contain C. Then
H intersects C and so D = H ∩ C is a non-zero effective divisor on C
which represents L|C . As D ≥ 0 is non-zero the degree of D is positive.
(iv) We start with a general observation. Let C be a smooth projective
curve and let L be a line bundle of degree zero. If s ∈ H0(C,L) is
a global section and D = (s) then D ≥ 0 and D has degree zero. It
follows that D = 0 and so L ' OC . So a line bundle of degree zero is
base point free if and only if it is trivial, that is, isomorphic to OE.
Now if L has degree zero then so does L⊗m. So if L has degree zero then
some power of L is base point free if and only if L is torsion, that is,
some power of L is the trivial line bundle. We now calculate an explicit
example (in fact any smooth projective curve C over C has plenty of
line bundles of degree zero which are not torsion (unless C = P1)).
Let E ⊂ P2

k be the smooth cubic Y 2Z = X3 − XZ2. Note that P0 =
[0 : 1 : 0] is a point of E. The map

f : E −→ Pic(E)

which sends P to OE(P −P0) sets up a correspondence between points
of E and line bundles of degree zero.
Now E is an algebraic group, where P0 is the identity point and addition
is given by the rule that three points sum to zero if and only if they
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are collinear. With this group structure, f is a group homomorphism.
All of this is observed in (II.6.10.2).
So all we want to do is find a point P of E which is not torsion. Since
the set of closed points is uncountable (it has the same cardinality as
C), it suffices to show that the set of torsion points is countable. Fix a
positive integer d. It suffices to show that there are only finitely many
points of order d. Since E is an algebraic group the set of points of
order dividing d is a Zariski closed subset. So all we have to show is
that there is a point whose order does not divide d.
Now if there are infinitely many points of order d then there are infin-
itely many points of order some prime p dividing d. So all we have to
show is that not every point other than P0 has order a prime p. There
are many ways to do this; here is one.
Consider first the case p = 2. A point P has order 2 if and only if
the tangent line to P meets E at P0 (the tangent line to P0 is given
by Z = 0 and this meets E only at the point P0; P0 is a flex point
and Z = 0 is a flex line). The set of lines through P0 is given by
aX + bZ = 0 where [a : b] ∈ P1. Ignoring the line Z = 0 and working
the affine plane Z 6= 0, are looking at lines of the form x = c, where c
is a contant. Plugging this into the equation y2 = x3 − x of the cubic,
we have

y2 = c3 − c,

and we want to know when this has only one solution. In this case
c3 − c = 0, so that c = 0, c = 1 and c = −1 are the only possibilities.
This gives us the points P1 = [0 : 0 : 1], P2 = [1 : 0 : 1] and P3 = [−1 :
0 : 1]. Thus there are points of order two but not every point has order
two (or is the identity).
Since there are points of order 2 there are only finitely many points of
order d, where d is odd. But then there are countably many torsion
points and there are points of infinite order. These correspond to line
bundles of degree zero no multiple of which is base point free.
It seems worthwhile to consider this story from the viewpoint of com-
plex manifolds and Riemann surfaces. In this case E is isomorphic to
the quotient of C modulo a lattice Λ and the group structure descends
from C. Points of order d correspond to elements of 1

d
Λ modulo ele-

ments of Λ. For any fixed d the set of such points of Zd × Zd (as a Lie
group E is nothing more than a product of two circles). So there are
plenty of points of infinite order.
There are other examples we could have chosen. We could have started
with the cuspidal cubic Y 2Z = X3. In this case line bundles of degree
zero correspond to points of the cuspidal cubic other than the origin;
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the underlying group is Ga and this has plenty of points which are not
torsion (at least if the ground field is not of characteristic p).
If we start with the nodal cubic, then the group line bundles of degree
zero is isomorphic to Gm. There are plenty of elements of this group
which are not torsion provided the ground field is not the algebraic
closure of a finite field.
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