MODEL ANSWERS TO HWK #2

1. It suffices to check that the map is an isomorphism on stalks. Suppose that $x \in X$. By assumption there are open neighbourhoods U and V of x and isomorphisms $\mathcal{L}|_U \simeq \mathcal{O}_U$, $\mathcal{M}|_V \simeq \mathcal{O}_V$. Passing to the open subset $U \cap V$ we may as well assume that $\mathcal{L} = \mathcal{M} = \mathcal{O}_X$.

Let $A = \mathcal{O}_{X,x}$. Then A is a local ring and f induces a surjective Amodule homomorphism $\phi: A \longrightarrow A$. ϕ is given by multiplication by an element a of A. Suppose that $\phi(b) = 1$. Then ab = 1 and so a is a unit and ϕ is an isomorphism. Thus f is an isomorphism on stalks and f is an isomorphism.

2. The vector space W of polynomials of degree m + n - 1 has dimensional m + n and the polynomials $x^i f$, $0 \le i \le n - 1$ and $x^j g$, $0 \le j \le m - 1$ are m + n elements of this vector space. So these polynomials are dependent if and only if they don't span. If f and g have a common root, then any linear combination of $x^i f$, $0 \le i \le n - 1$ and $x^j g$, $0 \le j \le m - 1$ has the same root, in which case they don't span, so that they must be dependent.

Suppose that they are dependent. The polynomials $x^i f$, $0 \le i \le n-1$ span a vector subspace U of dimension n and the polynomials $x^j g$, $0 \le j \le m-1$, span a vector subspace V of dimension m. If the polynomials are dependent then U and V intersect non-trivially, so that U and V contain a non-zero polynomial h of degree at most m+n-1. The elements of U are multiples of f and the elements of V are multiples of g so that h is a multiple of f and g. But then f and g must have a common factor. As K is a algebraically closed it follows that f and ghave a common root.

Putting all of this together we see that f and g have a common root if and only if the polynomials $x^i f$, $0 \le i \le n-1$ and $x^j g$, $0 \le j \le m-1$ are dependent. Therefore we can take the resultant be the following determinant:

a_0	a_1	a_2		a_m	0	0		0
0	a_0	a_1		a_{m-1}	a_m	0		0
0	0	a_0		a_{m-2}	a_{m-1}	a_m		0
:	÷	÷	÷	÷	÷	÷	÷	:
0	0	0		a_0	a_1	a_2		a_m
b_0	b_1	b_2		b_m	b_{m+1}	b_{m+2}		0
0	b_0	b_1		b_{m-1}	b_m	b_{m+1}		0
:	÷	÷	÷	:	÷	:	÷	:
0	0	0		b_{n-m}	b_{n-m+1}	b_{n-m+2}		b_n

3. (i) Pick a basis v_1, v_2, \ldots, v_n of V. Then ϕ is represented by a $n \times n$ matrix $A \in \mathbb{A}_{K}^{n^{2}}$, which is an irreducible affine variety.

(ii) We are certainly free to enlarge K. So we may assume that K is algebraically closed. Let $U \subset \mathbb{A}_K^{n^2}$ be the subset consisting of matrices with n distinct eigenvalues. If $f(x) = \det(A - xI)$ is the characteristic polynomial then the eigenvalues are roots of this polynomial and the locus U is the locus where the f(x) has no repeated roots. Now the function which takes a matrix and assigns the coefficients of the characteristic polynomial is naturally a morphism

$$c\colon \mathbb{A}_K^{n^2} \longrightarrow \mathbb{A}_K^{n+1}.$$

The function which takes a polynomial f and assigns the value of R(f, f') is also a morphism

$$r: \mathbb{A}_{K}^{n+1} \longrightarrow K.$$

The composition is a morphism

$$r \circ c \colon \mathbb{A}_K^{n^2} \longrightarrow K,$$

which is non-zero if and only if A belongs to U. Thus U is an open subset and it is certainly non-empty; just take any diagonal matrix with non-zero distinct entries on the diagonal (K is infinite as it is algebraically closed).

The characteristic polynomial vanishes on U, which is a dense open

subset and so the characteristic polynomial vanishes on $\mathbb{A}_{K}^{n^{2}}$. 4. (i) $U_{\sigma_{1}} = \mathbb{A}_{K}^{1} \times \mathbb{G}_{m}$ and $U_{\sigma_{2}} = \mathbb{A}_{K}^{1} \times \mathbb{G}_{m}$. The union is $\mathbb{A}_{K}^{2} - \{0\}$; the orbits are $\mathbb{G}_{m}^{2} = U_{0}$, $\mathbb{G}_{m} = U_{\sigma_{1}}$, and $\mathbb{G}_{m} = U_{\sigma_{2}}$.

(ii) Number the three maximal cones σ_1 , σ_2 and σ_3 in the usual way. The primitive generators of σ_1 are e_1 and e_2 , which generate the lattice and the primitive generators of σ_3 are e_1 and $-2e_1 - e_2$, which also generate the lattice. Thus $U_{\sigma_1} = \bigcup_{2} \mathbb{A}_{K}^2$. On the other hand, σ_2 is generated by e_2 and $-2e_1 - e_2$ which don't generate the lattice. In fact, we get the quadric cone:

$$U_{\sigma_2} = \operatorname{Spec} \frac{K[u, v, w]}{\langle v^2 - uw \rangle}.$$

We guess that the X is the quadric cone in \mathbb{P}^3 :

$$Q = \operatorname{Proj} \frac{K[U, V, W, T]}{\langle V^2 - UW \rangle}$$

When $T \neq 0$ we at least get an affine variety isomorphic to U_{σ_2} . To check our guess, we first calculate the three affine coordinate rings of the toric variety:

$$A_{\sigma_1} = K[x, y]$$
 $A_{\sigma_2} = K[x^{-1}, x^{-1}y, x^{-1}y^2]$ and $A_{\sigma_3} = K[xy^{-2}, y^{-1}].$

We already have one affine open subset of Q and we want two other open affine subsets. Now if we take the standard open affine cover of \mathbb{P}^3_K , the only points omitted by taking three of the four open subsets are the torus invariant points [1:0:0:0], [0:1:0:0], [0:0:1:0]and [0:0:0:1]. Of these the quadric cone only avoids the point [0:1:0:0]. So the obvious choice is to take three open subsets of Q, given by $U \neq 0, W \neq 0$ and $T \neq 0$, with coordinate rings:

$$B_{1} = K[V/U, T/U]$$

$$B_{2} = K[U/T, V/T, W/T] / \langle (U/T)(W/T) - (V/T)^{2} \rangle$$

$$B_{3} = K[V/W, T/W].$$

Here we used the fact that $W/U = (V/U)^2$ and $U/W = (V/W)^2$. Now we check the patching conditions. We put y = V/U, x = T/U. This matches up B_1 and A_{σ_1} . As (V/U)(V/W) = 1, we have $V/W = y^{-1}$ and

$$xy^{-2} = \frac{TU^2}{UV^2} = \frac{TU}{V^2} = \frac{T}{W}$$

This matches B_3 and A_{σ_3} . Finally,

$$x^{-1} = \frac{U}{T}$$
 $x^{-1}y = \frac{U}{T}\frac{V}{U} = \frac{V}{T}$ and $x^{-1}y = \frac{U}{T}\frac{V^2}{U^2} = \frac{W}{T}$.

so that B_2 and A_{σ_2} also match up.

(iii) Let $u_i \in M$ be the linear form which is zero on v_i and v_{i+1} and takes the value 1 on v_{i+2} (take subscripts modulo 4). Then u_1, u_2, u_3 and u_4 generate the dual cone $\check{\sigma} \subset M_{\mathbb{R}} = \mathbb{R}^3$ to σ , any three generate M and we have the relation $u_1 + u_3 = u_2 + u_4$. So

$$A_{\sigma} = \frac{K[a, b, c, d]}{\langle ac - bd \rangle}$$

It follows that U_{σ} is the quadric cone in \mathbb{A}^4_K .

5. (i) As σ is a rational polyhderal cone, if σ lives in a codimension k linear subspace, then in fact it lives in a codimension k linear subspace V_2 , spanned by elements of N. Choose a complement V_1 of dimension k, spanned by elements of N, so that $N_{\mathbb{R}} = V_1 + V_2$ and $V_1 \cap V_2 = \{0\}$. Let $N_1 = V_1 \cap N$ and $N_2 = V_2 \cap N$ so that $N = N_1 + N_2$. Let $\tau \subset V_2$ be the cone corresponding to σ . The decomposition $N = N_1 + N_2$ induces a dual decomposition $M = M_1 + M_2$, where $M_i = \text{Hom}(N_i, \mathbb{Z})$ and $\check{\sigma} = \check{\tau} + (M_1)_{\mathbb{R}}$. It follows that $S_{\sigma} = S_{\tau} + M_1$, so that $A_{\sigma} = A_{\tau}[x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}]$. But then $U_{\sigma} = U_{\tau} \times \mathbb{G}_m^k$.

(ii) If Y is a variety, note that $Y \times \mathbb{G}_m$ is regular if and only if Y is regular. So, using (i), we might as well assume that σ spans $N_{\mathbb{R}} = \mathbb{R}^n$. In this case, it is clear that (2) and (3) are equivalent, since any set of n generators of a lattice are equivalent modulo the action of $\operatorname{GL}(n,\mathbb{Z})$. As \mathbb{A}^n_K is regular, (3) implies (1).

The key is to show that (1) implies (2). Suppose that U_{σ} is regular. Let $\mathfrak{m} \triangleleft A_{\sigma}$ be the maximal ideal of x_{σ} . Note that \mathfrak{m} is a direct sum of eigenspaces, spanned by χ^{u} , where $u \in S_{\sigma}$. Further, \mathfrak{m}^{2} is generated by elements of the form χ^{u+v} , where u and v are non-zero elements of S_{σ} . So a basis for $\mathfrak{m}/\mathfrak{m}^{2}$ is given by χ^{u} , where u ranges over the elements of S_{σ} that are not the sum of two non-zero elements S_{σ} . As U_{σ} is regular, $\mathfrak{m}/\mathfrak{m}^{2}$ is an *n*-dimensional *K*-vector space. Let $w_{1}, w_{2}, \ldots, w_{m}$ be the primitive generators of the edges of $\check{\sigma}$. Then w_{i} is not a sum of two other elements of $\check{\sigma}$. It follows $m \leq n$, whence m = n, since $\check{\sigma}$ spans $M_{\mathbb{R}}$ and it is strongly convex (as σ spans $N_{\mathbb{R}}$).

Let $\sigma' \subset \check{\sigma}$ be the face spanned by $w_1, w_2, \ldots, w_{n-1}$. Any element belonging to $S_{\sigma} \cap \sigma'$ is a sum of $w_1, w_2, \ldots, w_{n-1}$, so that by induction we may assume that $w_1, w_2, \ldots, w_{n-1}$ span the lattice spanned by σ' . Changing coordinates, we may assume that $w_i = e_i, 1 \leq i \leq n-1$. Possibly reflecting in the plane spanned by $e_1, e_2, \ldots, e_{n-1}$, we may assume that the last coordinate of w_n is positive. In this case $\check{\sigma}$ contains a vector of the form $(a_1, a_2, \ldots, a_{n-1}, 1) \in \mathbb{N}^n$ (take a_i large). Thus the elements of S_{σ} generate the lattice N, in which case w_1, w_2, \ldots, w_n generate the lattice M. In this case σ is also spanned by vectors v_1, v_2, \ldots, v_n which generate the lattice N. Thus (1) implies (2).