
MODEL ANSWERS TO HWK #2

1. It suffices to check that the map is an isomorphism on stalks. Sup-
pose that x ∈ X. By assumption there are open neighbourhoods U
and V of x and isomorphisms L|U ' OU , M|V ' OV . Passing to the
open subset U ∩ V we may as well assume that L =M = OX .
Let A = OX,x. Then A is a local ring and f induces a surjective A-
module homomorphism φ : A −→ A. φ is given by multiplication by
an element a of A. Suppose that φ(b) = 1. Then ab = 1 and so a is
a unit and φ is an isomorphism. Thus f is an isomorphism on stalks
and f is an isomorphism.
2. The vector space W of polynomials of degree m + n − 1 has di-
mensional m + n and the polynomials xif , 0 ≤ i ≤ n − 1 and xjg,
0 ≤ j ≤ m − 1 are m + n elements of this vector space. So these
polynomials are dependent if and only if they don’t span. If f and g
have a common root, then any linear combination of xif , 0 ≤ i ≤ n−1
and xjg, 0 ≤ j ≤ m − 1 has the same root, in which case they don’t
span, so that they must be dependent.
Suppose that they are dependent. The polynomials xif , 0 ≤ i ≤ n− 1
span a vector subspace U of dimension n and the polynomials xjg,
0 ≤ j ≤ m − 1, span a vector subspace V of dimension m. If the
polynomials are dependent then U and V intersect non-trivially, so that
U and V contain a non-zero polynomial h of degree at most m+n− 1.
The elements of U are multiples of f and the elements of V are multiples
of g so that h is a multiple of f and g. But then f and g must have a
common factor. As K is a algebraically closed it follows that f and g
have a common root.
Putting all of this together we see that f and g have a common root if
and only if the polynomials xif , 0 ≤ i ≤ n− 1 and xjg, 0 ≤ j ≤ m− 1
are dependent. Therefore we can take the resultant be the following
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determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . am 0 0 . . . 0
0 a0 a1 . . . am−1 am 0 . . . 0
0 0 a0 . . . am−2 am−1 am . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . a0 a1 a2 . . . am
b0 b1 b2 . . . bm bm+1 bm+2 . . . 0
0 b0 b1 . . . bm−1 bm bm+1 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . bn−m bn−m+1 bn−m+2 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

3. (i) Pick a basis v1, v2, . . . , vn of V . Then φ is represented by a n×n
matrix A ∈ An2

K , which is an irreducible affine variety.
(ii) We are certainly free to enlarge K. So we may assume that K is

algebraically closed. Let U ⊂ An2

K be the subset consisting of matrices
with n distinct eigenvalues. If f(x) = det(A − xI) is the characteris-
tic polynomial then the eigenvalues are roots of this polynomial and
the locus U is the locus where the f(x) has no repeated roots. Now
the function which takes a matrix and assigns the coefficients of the
characteristic polynomial is naturally a morphism

c : An2

K −→ An+1
K .

The function which takes a polynomial f and assigns the value of
R(f, f ′) is also a morphism

r : An+1
K −→ K.

The composition is a morphism

r ◦ c : An2

K −→ K,

which is non-zero if and only if A belongs to U . Thus U is an open
subset and it is certainly non-empty; just take any diagonal matrix
with non-zero distinct entries on the diagonal (K is infinite as it is
algebraically closed).
The characteristic polynomial vanishes on U , which is a dense open
subset and so the characteristic polynomial vanishes on An2

K .
4. (i) Uσ1 = A1

K × Gm and Uσ2 = A1
K × Gm. The union is A2

K − {0};
the orbits are G2

m = U0, Gm = Uσ1 , and Gm = Uσ2 .
(ii) Number the three maximal cones σ1, σ2 and σ3 in the usual way.
The primitive generators of σ1 are e1 and e2, which generate the lattice
and the primitive generators of σ3 are e1 and −2e1 − e2, which also
generate the lattice. Thus Uσ1 = Uσ1 = A2

K . On the other hand, σ2
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is generated by e2 and −2e1 − e2 which don’t generate the lattice. In
fact, we get the quadric cone:

Uσ2 = Spec
K[u, v, w]

〈v2 − uw〉
.

We guess that the X is the quadric cone in P3:

Q = Proj
K[U, V,W, T ]

〈V 2 − UW 〉
.

When T 6= 0 we at least get an affine variety isomorphic to Uσ2 .
To check our guess, we first calculate the three affine coordinate rings
of the toric variety:

Aσ1 = K[x, y] Aσ2 = K[x−1, x−1y, x−1y2] and Aσ3 = K[xy−2, y−1].

We already have one affine open subset of Q and we want two other
open affine subsets. Now if we take the standard open affine cover of
P3
K , the only points omitted by taking three of the four open subsets

are the torus invariant points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0]
and [0 : 0 : 0 : 1]. Of these the quadric cone only avoids the point
[0 : 1 : 0 : 0]. So the obvious choice is to take three open subsets of Q,
given by U 6= 0, W 6= 0 and T 6= 0, with coordinate rings:

B1 = K[V/U, T/U ]

B2 = K[U/T, V/T,W/T ]/〈(U/T )(W/T )− (V/T )2〉
B3 = K[V/W, T/W ].

Here we used the fact that W/U = (V/U)2 and U/W = (V/W )2.
Now we check the patching conditions. We put y = V/U , x = T/U .
This matches up B1 and Aσ1 . As (V/U)(V/W ) = 1, we have V/W =
y−1 and

xy−2 =
TU2

UV 2
=
TU

V 2
=

T

W
.

This matches B3 and Aσ3 . Finally,

x−1 =
U

T
x−1y =

U

T

V

U
=
V

T
and x−1y =

U

T

V 2

U2
=
W

T
.

so that B2 and Aσ2 also match up.
(iii) Let ui ∈ M be the linear form which is zero on vi and vi+1 and
takes the value 1 on vi+2 (take subscripts modulo 4). Then u1, u2, u3
and u4 generate the dual cone σ̌ ⊂ MR = R3 to σ, any three generate
M and we have the relation u1 + u3 = u2 + u4. So

Aσ =
K[a, b, c, d]

〈ac− bd〉
.
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It follows that Uσ is the quadric cone in A4
K .

5. (i) As σ is a rational polyhderal cone, if σ lives in a codimension k
linear subspace, then in fact it lives in a codimension k linear subspace
V2, spanned by elements of N . Choose a complement V1 of dimension
k, spanned by elements of N , so that NR = V1 + V2 and V1 ∩ V2 = {0}.
Let N1 = V1 ∩N and N2 = V2 ∩N so that N = N1 + N2. Let τ ⊂ V2
be the cone corresponding to σ. The decomposition N = N1 + N2

induces a dual decomposition M = M1 +M2, where Mi = Hom(Ni,Z)
and σ̌ = τ̌ + (M1)R. It follows that Sσ = Sτ + M1, so that Aσ =
Aτ [x1, x

−1
1 , x2, x

−1
2 , . . . , xk, x

−1
k ]. But then Uσ = Uτ ×Gk

m.
(ii) If Y is a variety, note that Y × Gm is regular if and only if Y is
regular. So, using (i), we might as well assume that σ spans NR = Rn.
In this case, it is clear that (2) and (3) are equivalent, since any set of
n generators of a lattice are equivalent modulo the action of GL(n,Z).
As An

K is regular, (3) implies (1).
The key is to show that (1) implies (2). Suppose that Uσ is regular.
Let m / Aσ be the maximal ideal of xσ. Note that m is a direct sum of
eigenspaces, spanned by χu, where u ∈ Sσ. Further, m2 is generated by
elements of the form χu+v, where u and v are non-zero elements of Sσ.
So a basis for m/m2 is given by χu, where u ranges over the elements of
Sσ that are not the sum of two non-zero elements Sσ. As Uσ is regular,
m/m2 is an n-dimensional K-vector space. Let w1, w2, . . . , wm be the
primitive generators of the edges of σ̌. Then wi is not a sum of two
other elements of σ̌. It follows m ≤ n, whence m = n, since σ̌ spans
MR and it is strongly convex (as σ spans NR).
Let σ′ ⊂ σ̌ be the face spanned by w1, w2, . . . , wn−1. Any element be-
longing to Sσ ∩ σ′ is a sum of w1, w2, . . . , wn−1, so that by induction
we may assume that w1, w2, . . . , wn−1 span the lattice spanned by σ′.
Changing coordinates, we may assume that wi = ei, 1 ≤ i ≤ n − 1.
Possibly reflecting in the plane spanned by e1, e2, . . . , en−1, we may as-
sume that the last coordinate of wn is positive. In this case σ̌ contains a
vector of the form (a1, a2, . . . , an−1, 1) ∈ Nn (take ai large). Thus the el-
ements of Sσ generate the lattice N , in which case w1, w2, . . . , wn gener-
ate the lattice M . In this case σ is also spanned by vectors v1, v2, . . . , vn
which generate the lattice N . Thus (1) implies (2).
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