MODEL ANSWERS TO HWK #1

1. Let U be the free abelian semigroup generated by vy, vs, ..., Uy (SO
that U is abstractly isomorphic to N™). Define a semigroup homomor-
phism U — S, by sending v; to u;. This is surjective and the kernel
is generated by relations of the form

Z iV — Z bivi,

in S,. The group algebra A, is generated by z; = x*. Define a ring
homomorphism

where

Kz, 29, ..., 2, — Ay,
by sending x; to x". Then the kernel certainly contains relations of
the form
ai a2 b1 ba bm

a
Ty Ty .. X — X Ty T

If we quotient out by these relations, then we get a vector space () with
one dimensional eigenspaces indexed by u € S,. As A, has the same
property (the corresponding eigenspaces are spanned by the monomials
x*) the induced linear map () — A, is an isomorphism. So the given
relations actually generate the kernel.

2. We are free to replace Y by something bigger; so we may assume
that Y is projective. Let W C Y x B be the closure of the image of X
under the morphism f x 7. Then we may factor 7 into two morphisms,

X ow

p
B,
where p is restriction of the second projection. Note that the second
morphism is automatically projective and the first morphism is pro-
jective as the composition is projective and the second morphism is
separated.
By assumption h(m~*(bg)) is a point wg in W. But wy is then the fibre

of p over by. By upper semi-continuity of the dimensions of a fibre, it

follows that there is an open subset U of B, such that p~'(b) is zero
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dimensional, for every b € U. In this case, the dimension of the fibres
of h over p~}(U) is at least n, whence the dimension of any fibre of h
is at least n.

Pick w € W. Then the fibre h~!(w) has dimension at least n. On
the other hand, h™'(w) C 7~ !(p(w)), which has dimension n, so that
h~!(w) is a union of some of the irreducible components of 7! (p(w)).
It follows that (7~ !(p(w))) = p~*(p(w)) is a finite set of points. As
7 (p(w)) is connected, it follows that the image is a point.

3. Let m: A x A — A be projection onto the first factor and let
f: Ax A —s A be the morphism which sends (g, h) to ghg™'. Then
n1(e) = {e} x A is sent to a point by f. As the fibres of 7 are
irreducible of the same dimension and 7 is surjective, it follows that if
a € Athen f sends {a} x A to a point. As f sends (a,e) to e it follows
that aba™! = e, so that A is commutative.

4. Tt suffices to prove that if m sends the identity to the identity then
7 is a group homomomorphism. Consider the morphism of projective
varieties

fiAxA—> B,

which sends (a1, as) to m(a; +as) —m(ay) —m(as). Let p: AxA— A
denote projection onto the first factor. Then f sends ¢~'(e) to the
identity of B, where e is the identity of A. By the rigidity lemma f
sends {a} x A to a point. But f(a,e) is the identity so f(aq,az) is
the identity of B, for every a; and ay € A. But then 7 is a group
homomomorphism.
5. We may suppose that 7 sends one to one and we need to prove that
7 is a group homomorphism in this case. Since G, is a product in
the category of varieties and algebraic groups, it suffices to prove this
result when H = G,,. At the level of coordinate rings, we have a ring
homomorphism

¢: K|Z) — KI[Z™].
¢ is determined by where we send ¢, which is a polynomial in z1, s, . . ., 2.,
and their inverses. Since this polynomial has no zeroes or poles, it must
be a scalar multiple of a monomial (possibly with negative powers). As
1 is sent to 1 this scalar is 1. But map

(x1, 22, ..., Tym) — M,

where M = z{'2x5* ... x%m is clearly a group homomorphism.
6. We first show that f is a morphism. One can use the valuative
criteria but it is more straightforward to prove this result directly. It
suffices to prove that if we are given a rational map
fo Al -5 P,
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then f is defined at the origin. Using the local description of mor-
phisms, we have

t—[fo:fr: 1 ful,
where f; = g¢;/h; is a rational function. Let m; = v(f;), where v
measures the multiplicity of f; at the origin. Let m = minm;. Then f
is equally well represented by

t—[fo: fl o Sl
where f!/ = t™f;. By our choice of m, f! does not have a pole at 0 and
at least one f! is non-zero at 0. Thus f is a morphism.
We may assume that f(0) is the identity of A. As P! — {o0} ~ G, it
follows that f(a +b) = f(a) + f(b), for all @ and b € P! — {o0}. As
P! — {0, 00} ~ G,, it follows that f = 7,0 g, where g(1) is the identity.
In this case g(ab) = g(a) + ¢g(b) and so

flab) —p = g(ab) = g(a) + g(b) = f(a) + f(b) — 2p,
that is
flab) +p = fla)+ f(b) = fla+Db).

This is clearly absurd, unless f(a) is the identity of A, for every a € PL.
Now suppose that the groundfield is C. Then A is a complex torus,
the quotient of C™ by a lattice A of rank 2n and P! is the Riemann
sphere. The universal cover of A is C" and the universal cover of P! is
the Riemann sphere. By the universal property of the universal cover,
there is an induced commutative diagram

pt . C"

|,

Pt A
If g is not constant then one of the induced holomorphic maps
P! — C,

given by projection, is not constant. By the open mapping theorem
the image is open; as P! is compact the image is compact, whence
closed. The only open and closed subset of C is C itself, but this is not
compact, a contradiction. Hence g is constant and so f is constant as
well.



