
9. Algebraic versus analytic geometry

An analytic variety is defined in a very similar way to a scheme. First
of all, given an open subset of U ⊂ Cn, we say X ⊂ U is an analytic
closed subset if locally X is defined by the vanishing of holomorphic
(equivalently analytic functions). A regular analytic function on X is
then something which is the restriction of a holomorphic (equivalently
analytic) functions from U ⊂ Cn, so that the ring of regular functions
on X is

Oan
U (U)

I
,

where Oan
U (U) is the ring of holomorphic functions on U .

Globally, we have a locally ringed space (X,Oan
X ), where X is locally

isomorphic to an analytic closed subset of some open subset U ⊂ Cn

together with its sheaf of analytic functions.

Theorem 9.1 (Chow’s Theorem). Let X ⊂ Pn be a closed analytic
subset of projective space.

Then X is a projective subscheme.

More generally, given a (n algebraic) scheme (X,OX) of finite type
over C, we can construct an analytic variety (Xan,Oan

X ) in a fairly
obvious way. To get Xan we just have to ditch the points which are
not closed and enrich the topology.

The resulting functor, from the category of schemes of finite type over
C to the category of analytic spaces, induces an equivalence of cate-
gories between projective schemes and compact analytic subschemes
of projective space. The key point is that a morphism of schemes or
analytic spaces is represented by the graph; the graph sits inside the
product so that if the domain and range are projective then so is the
graph and then one just applies (9.1).

Note that if we drop the condition that X ⊂ Pn is an analytic closed
subset then there is no longer an equivalence of categories. For example
C has lots of holomorphic functions which are nowhere near algebraic.

If X is an analytic space whose local rings are all regular then X is
locally modeled on open subsets of Cn, so that X is a complex manifold.

A basic result in the theory of C∞-maps is Sard’s Theorem, which
states that the set of points where a map is singular is a subset of mea-
sure zero (of the base). Since any holomorphic map between complex
manifolds is automatically C∞, and the derivative of a polynomial is
the same as the derivative as a holomorphic function, it follows that
any morphism between varieties, over C, is smooth over an open sub-
set. In fact by the Lefschetz principle, this result extends to any variety
over C.
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Theorem 9.2. Let f : X −→ Y be a morphism of varieties over a field
of characteristic zero.

Then there is a dense open subset U of Y such that if q ∈ U and
p ∈ f−1(q) ∩Xsm then the differential dfp : TpX −→ TqY is surjective.
Further, if X is smooth, then the fibres f−1(q) are smooth if q ∈ U .

Let us recall the Lefschetz principle. First recall the notion of a
first order theory of logic. Basically this means that one describes a
theory of mathematics using a theory based on predicate calculus. For
example, the following is a true statement from the first order theory
of number theory,

∀n∀x∀y∀z n ≥ 3 =⇒ xn + yn 6= zn.

One basic and desirable property of a first order theory of logic is
that it is complete. In other words every possible statement (mean-
ing anything that is well-formed) can be either proved or disproved.
It is a very well-known result that the first order theory of number
theory is not complete (Gödel’s Incompleteness Theorem). What is
perhaps more surprising is that there are interesting theories which are
complete.

Theorem 9.3. The first order logic of algebraically closed fields of
characteristic zero is complete.

Notice that a typical statement of the first order logic of fields is
that a system of polynomial equations does or does not have solution.
Since most statements in algebraic geometry turn on whether or not a
system of polynomial equations have a solution, the following result is
very useful.

Principle 9.4 (Lefschetz Principle). Every statement in the first order
logic of algebraically closed fields of characteristic zero, which is true
over C, is in fact true over any algebraically closed field of character-
istic.

In fact this principle is immediate from (9.3). Suppose that p is a
statement in the first order logic of algebraically closed fields of char-
acteristic zero. By completeness, we can either prove p or not p. Since
p holds over the complex numbers, there is no way we can prove not
p. Therefore there must be a proof of p. But this proof is valid over
any field of characteristic zero, so p holds over any algebraically closed
field of characteristic zero.

A typical application of the Lefschetz principle is (9.2). By Sard’s
Theorem, we know that (9.2) holds over C. On the other hand, (9.2),
can be reformulated in the first order logic of algebraically closed fields
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of characteristic zero. Therefore by the Lefschetz principle, (9.2) is true
over algebraically closed field of characteristic zero.

Perhaps even more interesting, is that (9.2) fails in characteristic p.
Let f : A1 −→ A1 be the morphism t −→ tp. If we fix s, then the
equation

xp − s

is purely inseparable, that is, has only one root. Thus f is a bijection.
However, df is the zero map, since dzp = pzp−1dz = 0. Thus dfp is
nowhere surjective. Note that the fibres of this map, as schemes, are
isomorphic to zero dimensional schemes of length p.
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