
7. Blowing up and toric varieties

Suppose that we start with the cone σ spanned by e1 and e2 inside
NR = R2. We have already seen that this gives the affine toric variety
A2. Now suppose we insert the vector e1 + e2. We now get two cones
σ1 and σ2, the first spanned by e1 and e1 + e2 and the second spanned
by e1 + e2 and e2. Individually each is a copy of A2. The dual cones
are spanned by f2, f1−f2 and f1 and f2−f1. So we get SpecK[y, x/y]
and SpecK[x, x/y].

Suppose that we blow up A2 at the origin. The blow up sits inside
A2 × P1 with coordinates (x, y) and [S : T ] subject to the equations
xT = yS. On the open subset T 6= 0 we have coordinates s and y
and x = sy so that s = x/y. On the open subset S 6= 0 we have
coordinates x and t and y = xt so that t = y/x. So the toric variety
above is nothing more than the blow up of A2 at the origin. The central
ray corresponds to the exceptional divisor E, a copy of P1.

A couple of definitions:

Definition 7.1. Let G and H be algebraic groups which act on varieties
X and Y . Suppose we are given an algebraic group homomorphism,
ρ : G −→ H. We say that a morphism f : X −→ Y is ρ-equivariant
if f commutes with the action of G and H. If X and Y are toric
varieties and G and H are the tori contained in X and Y then we say
that f is a toric morphism.

It is easy to see that the morphism defined above is toric. We can
extend this picture to other toric surfaces. First a more intrinsic de-
scription of the blow up. Suppose we are given a toric surface and a
two dimensional cone σ such that the primitive generators v and w
of the two one dimensional faces of σ generate the lattice (so that up
the action of GL(2,Z), σ is the cone spanned by e1 and e2). Then the
blow up of the point corresponding to σ is a toric surface, which is
obtained by inserting the sum v + w of the two primitive generators
and subdividing σ in the obvious way (somewhat like the barycentric
subdivision in simplicial topology).

Example 7.2. Suppose we start with P2 and the standard fan. If we
insert the two vectors −e1 and −e2 this corresponds to blowing up two
invariant points, say [0 : 1 : 0] and [0 : 0 : 1]. Note that now −e1 − e2
is the sum of −e1 and −e2. So if we remove this vector this is like
blowing down a copy of P1. The resulting fan is the fan for P1 × P1.

Note that this is an easy way to see the birational map between the
quadric Q ⊂ P3 and P2 given by projection from a point.
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Example 7.3. Suppose we start with P2 and the standard fan, v1 = e1,
v2 = e2 and v3 = −e1 − e2. Suppose we insert w0 = e1 + e2, w1 = −e1
and w2 = −e2, that is, suppose we blow up the three coordinate points.

In the resulting fan, with six one dimensional cones, note that v1 =
(−e2) + (e1 + e2) = w0 + w1, v2 = (e1 + e2) + (−e1) = w0 + w2 and
v3 = −e1 − e2 = w1 + w2. It follows that we may blow down the strict
transform of the three lines to get another copy of P2, with the upside
down fan w0, w1 and w2.

This represents the standard Cremona transformation.
We can generalise this to higher dimensions. For example suppose

we start with the standard cone for A3 spanned by e1 and e2 and e3.
If we insert the vector e1 + e2 + e3 (thereby creating three maximal
cones) this corresponds to blowing up the origin. (In fact there is a
simple recipe for calculating the exceptional divisor; mod out by the
central e1 + e2 + e3; the quotient vector space is two dimensional and
the three cones map to the three cones in the quotient two dimensional
vector space which correspond to the fan for P2). Suppose we insert
the vector e1 + e2. Then the exceptional locus is P1 × A1. In fact this
corresponds to blowing up one of the axes (the axis is a copy of A1 and
over every point of the axis there is a copy of P1).

It is interesting to figure out the geometry behind the example of
a toric variety which is not projective. To warm up, suppose that we
start with A3

k. This is the toric variety associated to the fan spanned
by e1, e2, e3. Imagine blowing up two of the axes. This corresponds
to inserting two vectors, e1 + e2 and e1 + e3. However the order in
which we blow up is significant. Let’s introduce some notation. If we
blow up the x-axis π : Y −→ X and then the y-axis, ψ : Z −→ Y , let’s
call the exceptional divisors E1 and E2, and let E ′

1 denote the strict
transform of E1 on Z. E1 is a P1-bundle over the x-axis. The strict
transform of the y-axis in Y intersects E1 in a point p. When we blow
up this curve, E ′

1 −→ E1 blows up the point p. The fibre of E ′
1 over the

origin therefore consists of two copies Σ1 and Σ2 of P1. Σ1 is the strict
transform of the fibre of E1 over the origin and Σ2 is the exceptional
divisor. The fibre Σ of E2 over the origin is a copy of P1. Σ and Σ2 are
the same curve in Z.

The example of a toric variety which is not projective is obtained
from P3 by blowing up three coordinate axes, which form a triangle.
The twist is that we do something different at each of the three coor-
dinate points. Suppose that π : X −→ P3 is the birational morphism
down to P3, and let E1, E2 and E3 be the three exceptional divisors.
Over one point we extract E1 first then E2, over the second point we
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extract first E2 then E3 and over the last point we extract first E3 then
E1.

To see what has gone wrong, we need to work in the homology and
cohomology groups of X. Any curve C in X determines an element
of [C] ∈ H2(X,Z). Any Cartier divisor D in X determines a class
[D] ∈ H2(X,Z). We can pair these two classes to get an intersection
number D ·C ∈ Z. One way to compute this number is to consider the
line bundle L = OX(D) associated to D. Then

D · C = degL|C .

If D is ample then this intersection number is always positive. This
implies that the class of every curve is non-trivial in homology.

Suppose the reducible fibres of E1, E2 and E3 over their images are
A1 +A2, B1 +B2 and C1 +C3. Suppose that the general fibres are A,
B and C. We suppose that A1 is attached to B, B1 is attached to C
and C1 is attached to A. We have

[A] = [A1] + [A2]

= [B] + [A2]

= [B1] + [B2] + [A2]

= [C] + [B2] + [A2]

= [C1] + [C2] + [B2] + [A2]

= [A] + [C2] + [B2] + [A2],

in H2(X,Z), so that

[A2] + [B2] + [C2] = 0 ∈ H2(X,Z).

Suppose that D were an ample divisor on X. Then

0 = D · ([A2] + [B2] + [C2]) > D · [A2] +D · [B2] +D · [C2] > 0,

a contradiction.
There are a number of things to say about this way of looking at

things, which lead in different directions. The first is that there is no
particular reason to start with a triangle of curves. We could start
with two conics intersecting transversally (so that they lie in different
planes). We could even start with a nodal cubic, and just do something
different over the two branches of the curve passing through the node.
Neither of these examples are toric, of course. It is clear that in the
first two examples, the morphism

π : X −→ P3,
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is locally projective. It cannot be a projective morphism, since P3

is projective and the composition of projective is projective. It also
follows that π is not the blow up of a coherent sheaf of ideals on P3.
The third example is not even a variety. It is a complex manifold (and
in fact it is something called an algebraic space). In particular the
notion of the blow up in algebraic geometry is more delicate than it
might first appear.
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