3. Divisors on toric varieties

We start with computing the class group of a toric variety. Recall that the class group is the group of Weil divisors modulo linear equivalence. We denote the class group either by $\text{Cl}(X)$ or $A_{n-1}(X)$.

When talking about Weil divisors, we will always assume we have a scheme which is:

(*) noetherian, integral, separated, and regular in codimension one.

This is never a problem for toric varieties. If X is a toric variety, by assumption there is a dense open subset $U \cong \mathbb{G}_m^n$. The complement Z is a closed invariant subset.

Lemma 3.1. Suppose that X satisfies (*), let Z be a closed subset and let $U = X \setminus Z$.

Then there is an exact sequence

$$Z^s \rightarrow \text{Cl}(X) \rightarrow \text{Cl}(U) \rightarrow 0,$$

where s is the number of components of Z which are prime divisors.

Proof. If Y is a prime divisor on X then $Y' = Y \cap U$ is either a prime divisor on U or empty. This defines a group homomorphism $\rho: \text{Div}(X) \rightarrow \text{Div}(U)$.

If $Y' \subset U$ is a prime divisor, then let Y be the closure of Y' in X. Then Y is a prime divisor and $Y' = Y \cap U$. Thus ρ is surjective. If f is a rational function on X and $Y = (f)$, then the image of Y in $\text{Div}(U)$ is equal to $(f|_U)$, so ρ descends to a map of class groups.

If $Z = Z' \cup \bigcup_{i=1}^{s} Z_i$ where Z' has codimension at least two and Z_1, Z_2, \ldots, Z_s is a prime divisor, then the map which sends (m_1, m_2, \ldots, m_s) to $\sum m_i Z_i$ generates the kernel. \qed

Example 3.2. Let $X = \mathbb{P}^2_K$ and C be an irreducible curve of degree d. Then $\text{Cl}(\mathbb{P}^2 - C)$ is equal to \mathbb{Z}_d. Similarly $\text{Cl}(\mathbb{A}^n_K) = 0$.

Back to assuming that X is a toric variety. It follows by (3.1) that there is an exact sequence

$$Z^s \rightarrow \text{Cl}(X) \rightarrow \text{Cl}(U) \rightarrow 0.$$

Applying this to $X = \mathbb{A}^n_K$ it follows that $\text{Cl}(U) = 0$. So we get an exact sequence

$$0 \rightarrow K \rightarrow Z^s \rightarrow \text{Cl}(X) \rightarrow 0.$$

We want to identify the kernel K. This is equal to the set of principal divisors which are supported on the invariant divisors. If f is a rational function such that (f) is supported on the invariant divisors then f has
no zeroes or poles on the torus; it follows that $f = \lambda \chi^u$, where $\lambda \in K^*$ and $u \in M$.

Hence there is an exact sequence

$$M \longrightarrow \mathbb{Z}^* \longrightarrow \text{Cl}(X) \longrightarrow 0.$$

Recall that the invariant divisors are in bijection with the one dimensional cones τ of the fan F. Now, given a one dimensional cone τ, there is a unique vector $v \in \tau \cap M$ such that if w also belongs to $\tau \cap M$ and we write $w = p \cdot v$ then $p \geq 1$. We call v a primitive generator of τ.

Lemma 3.3. Let $u \in M$. Suppose that X is the affine toric variety associated to a cone $\sigma \subset N_\mathbb{R}$. Let v be a primitive generator of a one dimensional ray τ of σ and let D be the corresponding invariant divisor. Then $\text{ord}_D(\chi^u) = \langle u, v \rangle$. In particular

$$\langle \chi^u \rangle = \sum \langle u, v_i \rangle D_i,$$

where the sum ranges over the invariant divisors.

Proof. We can calculate the order on the open set $U_\sigma = \mathbb{A}^1_k \times \mathbb{G}_m^{n-1}$, where D corresponds to $\{0\} \times \mathbb{G}_m^{n-1}$. In this case we can ignore the factor \mathbb{G}_m^{n-1} and we are reduced to the one dimensional case. So $N = \mathbb{Z}$, $v = 1$ and $u \in M = \mathbb{Z}$. In this case χ^u is the monomial x^u and the order of vanishing at the origin is exactly u. \hfill \Box

It follows that if $X = X(F)$ is the toric variety associated to a fan F which spans $N_\mathbb{R}$ then we have a short exact sequence

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^* \longrightarrow \text{Cl}(X) \longrightarrow 0.$$

Example 3.4. Let σ be the cone spanned by $2e_1 - e_2$ and e_2 inside $N_\mathbb{R} = \mathbb{R}^2$. There are two invariant divisors D_1 and D_2. The principal divisor associated to $u = f_1 = (1, 0)$ is $2D_1$ and the principal divisor associated to $u = f_2 = (0, 1)$ is $D_2 - D_1$. So the class group is \mathbb{Z}_2.

Note that the dual cone $\bar{\sigma}$ is the cone spanned by f_1 and $f_1 + 2f_2$. Generators for the monoid $S_\sigma = \bar{\sigma} \cap M$ are $f_1, f_1 + f_2$ and $f_1 + 2f_2$. So the group algebra

$$A_\sigma = k[x, xy, xy^2] = \frac{k[u, v, w]}{\langle u^2 - uw \rangle},$$

and $X = U_\sigma$ is the quadric cone.

Now suppose we take the standard fan associated to \mathbb{P}^2. The invariant divisors are the three coordinate lines, D_1, D_2 and D_3. If $f_1 = (1, 0)$
and \(f_2 = (0, 1) \) then
\[
(\chi^{f_1}) = D_1 - D_3 \quad \text{and} \quad (\chi^{f_2}) = D_2 - D_3.
\]

So the class group is \(\mathbb{Z} \).

We now turn to calculating the Picard group of a toric variety \(X \).

Definition 3.5. Let \(X \) be a scheme.

The set of invertible sheaves forms an abelian group \(\text{Pic} (X) \), where multiplication corresponds to tensor product and the inverse to the dual.

Recall that if \(X \) is a normal variety, every Cartier divisor \(D \) on \(X \) determines a Weil divisor
\[
\text{ord}_V(D)V,
\]
where sum runs over all prime divisors of \(X \). Thus the set of Cartier divisors embeds in the set of Weil divisors. We say that \(X \) is **factorial** if every Weil divisor is Cartier.

Let’s consider which Weil divisors on a toric variety are Cartier. We classify all Cartier divisors whose underlying Weil divisor is invariant; we dub these Cartier divisors \(T \)-Cartier. We start with the case of the affine toric variety associated to a cone \(\sigma \subset \mathbb{N}_R \). It suffices to classify all invertible subsheaves \(\mathcal{O}_X(D) \subset \mathcal{K} \), where \(\mathcal{K} \) is the sheaf of total quotient rings of \(\mathcal{O}_X \). Taking global sections, since we are on an affine variety, it suffices to classify all fractional ideals,
\[
I = H^0(X, \mathcal{O}_X(D)) \subset H^0(X, \mathcal{K}).
\]

Invariance of \(D \) implies that \(I \) is graded by \(M \), that is, \(I \) is a direct sum of eigenspaces. As \(D \) is Cartier, \(I \) is principal at the distinguished point \(x_\sigma \) of \(U_\sigma \), so that \(I/mI \) is one dimensional, where
\[
m = \sum k \cdot \chi^u.
\]

Pick \(U \in M \) such that the image of \(\chi^u \) generates this one dimensional vector space. Nakayama’s Lemma implies that \(I = A_\sigma \chi^u \), that is \(I \) is the ideal generated by \(\chi^u \), so that \(D = (\chi^u) \) is principal. As every Weil divisor is linearly equivalent to a Weil divisor supported on the invariant divisors, every Cartier divisor is linearly equivalent to a \(T \)-Cartier divisor. Hence, the only Cartier divisors are the principal divisors and \(X \) is factorial if and only if the Class group is trivial.

Example 3.6. The quadric cone \(Q \), given by \(xy - z^2 = 0 \) in \(\mathbb{A}^3_k \) is not factorial. We have already seen (3.4) that the class group is \(\mathbb{Z}_2 \).
If $\sigma \subset N_\mathbb{R}$ is not maximal dimensional then every Cartier divisor on U_σ whose associated Weil divisor is invariant is of the form (χ^u) but

$$(\chi^u) = (\chi^{u'}) \quad \text{if and only if} \quad u - u' \in \sigma^\perp \cap M = M(\sigma).$$

So the T-Cartier divisors are in correspondence with $M/M(\sigma)$.

Now suppose that $X = X(F)$ is a general toric variety. Then a T-Cartier divisor is given by specifying an element $u(\sigma) \in M/M(\sigma)$, for every cone σ in F. This defines a divisor $(\chi^{-u(\sigma)})$; equivalently a fractional ideal

$$I = H^0(X, \mathcal{O}_X(D)) = A_\sigma \cdot \chi^{u(\sigma)}.$$

These maps must agree on overlaps; if τ is a face of σ then $u(\sigma) \in M/M(\sigma)$ must map to $u(\tau) \in M/M(\tau)$.

Note that it is somewhat hard to keep track of the T-Cartier divisors. We look for a way to repackage the same combinatorial data into a more convenient form. As usual, this means we should look at the dual picture.

The data

$$\{ u(\sigma) \in M/M(\sigma) \mid \sigma \in F \},$$

for a T-Cartier divisor D determines a continuous piecewise linear function ϕ_D on the support $|F|$ of F. If $v \in \sigma$ then let

$$\phi_D(v) = \langle u(\sigma), v \rangle.$$

Compatibility of the data implies that ϕ_D is well-defined and continuous. Conversely, given any continuous function ϕ, which is linear and integral (that is, given by an element of M) on each cone, we can associate a unique T-Cartier divisor D. If $D = \sum a_i D_i$ the function is given by $\phi_D(v_i) = -a_i$, where v_i is the primitive generator of the ray corresponding to D_i.

Note that

$$\phi_D + \phi_E = \phi_{D+E} \quad \text{and} \quad \phi_{mD} = m\phi_D.$$

Note also that $\phi_{(\chi^u)}$ is the linear function given by $-u$. So D and E are linearly equivalent if and only if ϕ_D and ϕ_E differ by a linear function.

If X is any variety which satisfies (\footnote{[1]} then the natural map

$$\text{Pic}(X) \rightarrow \text{Cl}(X),$$

is an embedding. It is an interesting to compare Pic(X) and Cl(X) on a toric variety. Denote by Div$_T(X)$ the group of T-Cartier divisors.
Proposition 3.7. Let $X = X(F)$ be the toric variety associated to a fan F which spans $N_{\mathbb{R}}$. Then there is a commutative diagram with exact rows:

$$
\begin{array}{c}
0 \rightarrow M \rightarrow \text{Div}_T(X) \rightarrow \text{Pic}(X) \rightarrow 0 \\
\| \downarrow \quad \downarrow \quad \downarrow \\
0 \rightarrow M \rightarrow \mathbb{Z}^s \rightarrow \text{Cl}(X) \rightarrow 0.
\end{array}
$$

In particular

$$\rho(X) = \text{rank}(\text{Pic}(X)) \leq \text{rank}(\text{Cl}(X)) = s - n.$$

Further $\text{Pic}(X)$ is a free abelian group.

Proof. We have already seen that the bottom row is exact. If L is an invertible sheaf then $L|_U$ is trivial. Suppose that $L = \mathcal{O}_X(E)$. Pick a rational function such that $(f)|_U = E|_U$. Let $D = E - (f)$. Then D is T-Cartier, since it is supported away from the torus and exactness of the top row is easy.

Finally, $\text{Pic}(X)$ is represented by equivalence classes of continuous, piecewise integral linear functions modulo linear functions. Clearly if $m\phi$ is linear then so is ϕ, so that $\text{Pic}(X)$ is torsion free. \qed