3. Divisors on toric varieties

We start with computing the class group of a toric variety. Recall that the class group is the group of Weil divisors modulo linear equivalence. We denote the class group either by Cl(X) or $A_{n-1}(X)$.

When talking about Weil divisors, we will always assume we have a scheme which is:

(*) noetherian, integral, separated, and regular in codimension one.

This is never a problem for toric varities. If X is a toric variety, by assumption there is a dense open subset $U \simeq \mathbb{G}_m^n$. The complement Z is a closed invariant subset.

Lemma 3.1. Suppose that X satisfies (*), let Z be a closed subset and let $U = X \setminus Z$.

Then there is an exact sequence

 $\mathbb{Z}^s \longrightarrow \operatorname{Cl}(X) \longrightarrow \operatorname{Cl}(U) \longrightarrow 0,$

where s is the number of components of Z which are prime divisors.

Proof. If Y is a prime divisor on X then $Y' = Y \cap U$ is either a prime divisor on U or empty. This defines a group homomorphism

$$\rho \colon \operatorname{Div}(X) \longrightarrow \operatorname{Div}(U).$$

If $Y' \subset U$ is a prime divisor, then let Y be the closure of Y' in X. Then Y is a prime divisor and $Y' = Y \cap U$. Thus ρ is surjective. If f is a rational function on X and Y = (f), then the image of Y in Div(U) is equal to $(f|_U)$, so ρ descends to a map of class groups.

If $Z = Z' \cup \bigcup_{i=1}^{s} Z_i$ where Z' has codimension at least two and Z_1, Z_2, \ldots, Z_s is a prime divisor, then the map which sends (m_1, m_2, \ldots, m_s) to $\sum m_i Z_i$ generates the kernel.

Example 3.2. Let $X = \mathbb{P}_{K}^{2}$ and C be an irreducible curve of degree d. Then $\operatorname{Cl}(\mathbb{P}^{2} - C)$ is equal to \mathbb{Z}_{d} . Similarly $\operatorname{Cl}(\mathbb{A}_{K}^{n}) = 0$.

Back to assuming that X is a toric variety. It follows by (3.1) that there is an exact sequence

$$\mathbb{Z}^s \longrightarrow \operatorname{Cl}(X) \longrightarrow \operatorname{Cl}(U) \longrightarrow 0.$$

Applying this to $X = \mathbb{A}_K^n$ it follows that $\operatorname{Cl}(U) = 0$. So we get an exact sequence

$$0 \longrightarrow K \longrightarrow \mathbb{Z}^s \longrightarrow \operatorname{Cl}(X) \longrightarrow 0.$$

We want to identify the kernel K. This is equal to the set of principal divisors which are supported on the invariant divisors. If f is a rational function such that (f) is supported on the invariant divisors then f has

no zeroes or poles on the torus; it follows that $f = \lambda \chi^u$, where $\lambda \in K^*$ and $u \in M$.

Hence there is an exact sequence

$$M \longrightarrow \mathbb{Z}^s \longrightarrow \operatorname{Cl}(X) \longrightarrow 0.$$

Recall that the invariant divisors are in bijection with the one dimensional cones τ of the fan F. Now, given a one dimensional cone τ , there is a unique vector $v \in \tau \cap M$ such that if w also belongs to $\tau \cap M$ and we write $w = p \cdot v$ then $p \ge 1$. We call v a **primitive generator** of τ .

Lemma 3.3. Let $u \in M$. Suppose that X is the affine toric variety associated to a cone $\sigma \subset N_{\mathbb{R}}$. Let v be a primitive generator of a one dimensional ray τ of σ and let D be the corresponding invariant divisor. Then ord $(\chi^{u}) = \langle u, v \rangle$. In particular

Then $\operatorname{ord}_D(\chi^u) = \langle u, v \rangle$. In particular

$$(\chi^u) = \sum_i \langle u, v_i \rangle D_i,$$

where the sum ranges over the invariant divisors.

Proof. We can calculate the order on the open set $U_{\tau} = \mathbb{A}_k^1 \times \mathbb{G}_m^{n-1}$, where D corresponds to $\{0\} \times \mathbb{G}_m^{n-1}$. In this case we can ignore the factor \mathbb{G}_m^{n-1} and we are reduced to the one dimensional case. So $N = \mathbb{Z}$, v = 1 and $u \in M = \mathbb{Z}$. In this case χ^u is the monomial x^u and the order of vanishing at the origin is exactly u.

It follows that if X = X(F) is the toric variety associated to a fan F which spans $N_{\mathbb{R}}$ then we have a short exact sequence

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^s \longrightarrow \operatorname{Cl}(X) \longrightarrow 0.$$

Example 3.4. Let σ be the cone spanned by $2e_1 - e_2$ and e_2 inside $N_{\mathbb{R}} = \mathbb{R}^2$. There are two invariant divisors D_1 and D_2 . The principal divisor associated to $u = f_1 = (1,0)$ is $2D_1$ and the principal divisor associated to $u = f_2 = (0,1)$ is $D_2 - D_1$. So the class group is \mathbb{Z}_2 .

Note that the dual cone $\check{\sigma}$ is the cone spanned by f_1 and $f_1 + 2f_2$. Generators for the monoid $S_{\sigma} = \check{\sigma} \cap M$ are f_1 , $f_1 + f_2$ and $f_1 + 2f_2$. So the group algebra

$$A_{\sigma} = k[x, xy, xy^2] = \frac{k[u, v, w]}{\langle v^2 - uw \rangle},$$

and $X = U_{\sigma}$ is the quadric cone.

Now suppose we take the standard fan associated to \mathbb{P}^2 . The invariant divisors are the three coordinate lines, D_1 , D_2 and D_3 . If $f_1 = (1,0)$

and $f_2 = (0, 1)$ then

$$(\chi^{f_1}) = D_1 - D_3$$
 and $(\chi^{f_2}) = D_2 - D_3$.

So the class group is \mathbb{Z} .

We now turn to calculating the Picard group of a toric variety X.

Definition 3.5. Let X be a scheme.

The set of invertible sheaves forms an abelian group Pic(X), where multiplication corresponds to tensor product and the inverse to the dual.

Recall that if X is a normal variety, every Cartier divisor D on X determines a Weil divisor

$$\operatorname{ord}_V(D)V,$$

where sum runs over all prime divisors of X. Thus the set of Cartier divisors embeds in the set of Weil divisors. We say that X is **factorial** if every Weil divisor is Cartier.

Let's consider which Weil divisors on a toric variety are Cartier. We classify all Cartier divisors whose underlying Weil divisor is invariant; we dub these Cartier divisors *T*-Cartier. We start with the case of the affine toric variety associated to a cone $\sigma \subset N_{\mathbb{R}}$. It suffices to classify all invertible subsheaves $\mathcal{O}_X(D) \subset \mathcal{K}$, where \mathcal{K} is the sheaf of total quotient rings of \mathcal{O}_X . Taking global sections, since we are on an affine variety, it suffices to classify all fractional ideals,

$$I = H^0(X, \mathcal{O}_X(D)) \subset H^0(X, \mathcal{K}).$$

Invariance of D implies that I is graded by M, that is, I is a direct sum of eigenspaces. As D is Cartier, I is principal at the distinguished point x_{σ} of U_{σ} , so that $I/\mathfrak{m}I$ is one dimensional, where

$$\mathfrak{m} = \sum k \cdot \chi^u.$$

Pick $U \in M$ such that the image of χ^u generates this one dimensional vector space. Nakayama's Lemma implies that $I = A_{\sigma}\chi^u$, that is I is the ideal generated by χ^u , so that $D = (\chi^u)$ is principal. As every Weil divisor is linearly equivalent to a Weil divisor supported on the invariant divisors, every Cartier divisor is linearly equivalent to a T-Cartier divisor. Hence, the only Cartier divisors are the principal divisors and X is factorial if and only if the Class group is trivial.

Example 3.6. The quadric cone Q, given by $xy - z^2 = 0$ in \mathbb{A}^3_k is not factorial. We have already seen (3.4) that the class group is \mathbb{Z}_2 .

If $\sigma \subset N_{\mathbb{R}}$ is not maximal dimensional then every Cartier divisor on U_{σ} whose associated Weil divisor is invariant is of the form (χ^u) but

$$(\chi^u) = (\chi^{u'})$$
 if and only if $u - u' \in \sigma^{\perp} \cap M = M(\sigma)$.

So the T-Cartier divisors are in correspondence with $M/M(\sigma)$.

Now suppose that X = X(F) is a general toric variety. Then a T-Cartier divisor is given by specifying an element $u(\sigma) \in M/M(\sigma)$, for every cone σ in F. This defines a divisor $(\chi^{-u(\sigma)})$; equivalently a fractional ideal

$$I = H^0(X, \mathcal{O}_X(D)) = A_{\sigma} \cdot \chi^{u(\sigma)}.$$

These maps must agree on overlaps; if τ is a face of σ then $u(\sigma) \in M/M(\sigma)$ must map to $u(\tau) \in M/M(\tau)$.

Note that it is somewhat hard to keep track of the T-Cartier divisors. We look for a way to repackage the same combinatorial data into a more convenient form. As usual, this means we should look at the dual picture.

The data

$$\{ u(\sigma) \in M/M(\sigma) \, | \, \sigma \in F \},\$$

for a *T*-Cartier divisor *D* determines a continuous piecewise linear function ϕ_D on the support |F| of *F*. If $v \in \sigma$ then let

$$\phi_D(v) = \langle u(\sigma), v \rangle.$$

Compatibility of the data implies that ϕ_D is well-defined and continuous. Conversely, given any continuous function ϕ , which is linear and integral (that is, given by an element of M) on each cone, we can associate a unique T-Cartier divisor D. If $D = \sum a_i D_i$ the function is given by $\phi_D(v_i) = -a_i$, where v_i is the primitive generator of the ray corresponding to D_i .

Note that

$$\phi_D + \phi_E = \phi_{D+E}$$
 and $\phi_{mD} = m\phi_D$

Note also that $\phi_{(\chi^u)}$ is the linear function given by -u. So D and E are linearly equivalent if and only if ϕ_D and ϕ_E differ by a linear function.

If X is any variety which satisfies (*) then the natural map

$$\operatorname{Pic}(X) \longrightarrow \operatorname{Cl}(X),$$

is an embedding. It is an interesting to compare Pic(X) and Cl(X) on a toric variety. Denote by $Div_T(X)$ the group of *T*-Cartier divisors. **Proposition 3.7.** Let X = X(F) be the toric variety associated to a fan F which spans $N_{\mathbb{R}}$. Then there is a commutative diagram with exact rows:

In particular

$$\rho(X) = \operatorname{rank}(\operatorname{Pic}(X)) \le \operatorname{rank}(\operatorname{Cl}(X)) = s - n.$$

Further Pic(X) is a free abelian group.

Proof. We have already seen that the bottom row is exact. If L is an invertible sheaf then $L|_U$ is trivial. Suppose that $L = \mathcal{O}_X(E)$. Pick a rational function such that $(f)|_U = E|_U$. Let D = E - (f). Then D is T-Cartier, since it is supported away from the torus and exactness of the top row is easy.

Finally, $\operatorname{Pic}(X)$ is represented by equivalence classes of continuous, piecewise integral linear functions modulo linear functions. Clearly if $m\phi$ is linear then so is ϕ , so that $\operatorname{Pic}(X)$ is torsion free.