
3. Divisors on toric varieties

We start with computing the class group of a toric variety. Recall
that the class group is the group of Weil divisors modulo linear equiv-
alence. We denote the class group either by Cl(X) or An−1(X).

When talking about Weil divisors, we will always assume we have a
scheme which is:

(∗) noetherian, integral, separated, and regular in codimension one.

This is never a problem for toric varities. If X is a toric variety, by
assumption there is a dense open subset U ' Gn

m. The complement Z
is a closed invariant subset.

Lemma 3.1. Suppose that X satisfies (∗), let Z be a closed subset and
let U = X \ Z.

Then there is an exact sequence

Zs −→ Cl(X) −→ Cl(U) −→ 0,

where s is the number of components of Z which are prime divisors.

Proof. If Y is a prime divisor on X then Y ′ = Y ∩ U is either a prime
divisor on U or empty. This defines a group homomorphism

ρ : Div(X) −→ Div(U).

If Y ′ ⊂ U is a prime divisor, then let Y be the closure of Y ′ in X. Then
Y is a prime divisor and Y ′ = Y ∩ U . Thus ρ is surjective. If f is a
rational function on X and Y = (f), then the image of Y in Div(U) is
equal to (f |U), so ρ descends to a map of class groups.

If Z = Z ′ ∪
⋃s
i=1 Zi where Z ′ has codimension at least two and

Z1, Z2, . . . , Zs is a prime divisor, then the map which sends (m1,m2, . . . ,ms)
to

∑
miZi generates the kernel. �

Example 3.2. Let X = P2
K and C be an irreducible curve of degree d.

Then Cl(P2 − C) is equal to Zd. Similarly Cl(An
K) = 0.

Back to assuming that X is a toric variety. It follows by (3.1) that
there is an exact sequence

Zs −→ Cl(X) −→ Cl(U) −→ 0.

Applying this to X = An
K it follows that Cl(U) = 0. So we get an

exact sequence

0 −→ K −→ Zs −→ Cl(X) −→ 0.

We want to identify the kernel K. This is equal to the set of principal
divisors which are supported on the invariant divisors. If f is a rational
function such that (f) is supported on the invariant divisors then f has
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no zeroes or poles on the torus; it follows that f = λχu, where λ ∈ K∗
and u ∈M .

Hence there is an exact sequence

M −→ Zs −→ Cl(X) −→ 0.

Recall that the invariant divisors are in bijection with the one di-
mensional cones τ of the fan F . Now, given a one dimensional cone τ ,
there is a unique vector v ∈ τ ∩M such that if w also belongs to τ ∩M
and we write w = p · v then p ≥ 1. We call v a primitive generator
of τ .

Lemma 3.3. Let u ∈ M . Suppose that X is the affine toric variety
associated to a cone σ ⊂ NR. Let v be a primitive generator of a one
dimensional ray τ of σ and let D be the corresponding invariant divisor.

Then ordD(χu) = 〈u, v〉. In particular

(χu) =
∑
i

〈u, vi〉Di,

where the sum ranges over the invariant divisors.

Proof. We can calculate the order on the open set Uτ = A1
k × Gn−1

m ,
where D corresponds to {0} × Gn−1

m . In this case we can ignore the
factor Gn−1

m and we are reduced to the one dimensional case. So N = Z,
v = 1 and u ∈ M = Z. In this case χu is the monomial xu and the
order of vanishing at the origin is exactly u. �

It follows that if X = X(F ) is the toric variety associated to a fan
F which spans NR then we have a short exact sequence

0 −→M −→ Zs −→ Cl(X) −→ 0.

Example 3.4. Let σ be the cone spanned by 2e1 − e2 and e2 inside
NR = R2. There are two invariant divisors D1 and D2. The principal
divisor associated to u = f1 = (1, 0) is 2D1 and the principal divisor
associated to u = f2 = (0, 1) is D2 −D1. So the class group is Z2.

Note that the dual cone σ̌ is the cone spanned by f1 and f1 + 2f2.
Generators for the monoid Sσ = σ̌ ∩M are f1, f1 + f2 and f1 + 2f2.
So the group algebra

Aσ = k[x, xy, xy2] =
k[u, v, w]

〈v2 − uw〉
,

and X = Uσ is the quadric cone.
Now suppose we take the standard fan associated to P2. The invari-

ant divisors are the three coordinate lines, D1, D2 and D3. If f1 = (1, 0)
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and f2 = (0, 1) then

(χf1) = D1 −D3 and (χf2) = D2 −D3.

So the class group is Z.

We now turn to calculating the Picard group of a toric variety X.

Definition 3.5. Let X be a scheme.
The set of invertible sheaves forms an abelian group Pic (X), where

multiplication corresponds to tensor product and the inverse to the dual.

Recall that if X is a normal variety, every Cartier divisor D on X
determines a Weil divisor

ordV (D)V,

where sum runs over all prime divisors of X. Thus the set of Cartier
divisors embeds in the set of Weil divisors. We say that X is factorial
if every Weil divisor is Cartier.

Let’s consider which Weil divisors on a toric variety are Cartier. We
classify all Cartier divisors whose underlying Weil divisor is invariant;
we dub these Cartier divisors T -Cartier. We start with the case of the
affine toric variety associated to a cone σ ⊂ NR. It suffices to classify
all invertible subsheaves OX(D) ⊂ K, where K is the sheaf of total
quotient rings of OX . Taking global sections, since we are on an affine
variety, it suffices to classify all fractional ideals,

I = H0(X,OX(D)) ⊂ H0(X,K).

Invariance of D implies that I is graded by M , that is, I is a direct
sum of eigenspaces. As D is Cartier, I is principal at the distinguished
point xσ of Uσ, so that I/mI is one dimensional, where

m =
∑

k · χu.

Pick U ∈M such that the image of χu generates this one dimensional
vector space. Nakayama’s Lemma implies that I = Aσχ

u, that is
I is the ideal generated by χu, so that D = (χu) is principal. As
every Weil divisor is linearly equivalent to a Weil divisor supported on
the invariant divisors, every Cartier divisor is linearly equivalent to a
T -Cartier divisor. Hence, the only Cartier divisors are the principal
divisors and X is factorial if and only if the Class group is trivial.

Example 3.6. The quadric cone Q, given by xy− z2 = 0 in A3
k is not

factorial. We have already seen (3.4) that the class group is Z2.
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If σ ⊂ NR is not maximal dimensional then every Cartier divisor on
Uσ whose associated Weil divisor is invariant is of the form (χu) but

(χu) = (χu
′
) if and only if u− u′ ∈ σ⊥ ∩M = M(σ).

So the T -Cartier divisors are in correspondence with M/M(σ).
Now suppose that X = X(F ) is a general toric variety. Then a

T -Cartier divisor is given by specifying an element u(σ) ∈ M/M(σ),
for every cone σ in F . This defines a divisor (χ−u(σ)); equivalently a
fractional ideal

I = H0(X,OX(D)) = Aσ · χu(σ).

These maps must agree on overlaps; if τ is a face of σ then u(σ) ∈
M/M(σ) must map to u(τ) ∈M/M(τ).

Note that it is somewhat hard to keep track of the T -Cartier divisors.
We look for a way to repackage the same combinatorial data into a
more convenient form. As usual, this means we should look at the dual
picture.

The data

{u(σ) ∈M/M(σ) |σ ∈ F },
for a T -Cartier divisor D determines a continuous piecewise linear func-
tion φD on the support |F | of F . If v ∈ σ then let

φD(v) = 〈u(σ), v〉.

Compatibility of the data implies that φD is well-defined and continu-
ous. Conversely, given any continuous function φ, which is linear and
integral (that is, given by an element of M) on each cone, we can as-
sociate a unique T -Cartier divisor D. If D =

∑
aiDi the function is

given by φD(vi) = −ai, where vi is the primitive generator of the ray
corresponding to Di.

Note that

φD + φE = φD+E and φmD = mφD.

Note also that φ(χu) is the linear function given by −u. So D and E are
linearly equivalent if and only if φD and φE differ by a linear function.

If X is any variety which satisfies (∗) then the natural map

Pic(X) −→ Cl(X),

is an embedding. It is an interesting to compare Pic(X) and Cl(X) on
a toric variety. Denote by DivT (X) the group of T -Cartier divisors.
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Proposition 3.7. Let X = X(F ) be the toric variety associated to
a fan F which spans NR. Then there is a commutative diagram with
exact rows:

0 - M - DivT (X) - Pic(X) - 0

‖

0 - M - Zs
?

∩

- Cl(X)
?

- 0.

In particular

ρ(X) = rank(Pic(X)) ≤ rank(Cl(X)) = s− n.
Further Pic(X) is a free abelian group.

Proof. We have already seen that the bottom row is exact. If L is an
invertible sheaf then L|U is trivial. Suppose that L = OX(E). Pick a
rational function such that (f)|U = E|U . Let D = E − (f). Then D is
T -Cartier, since it is supported away from the torus and exactness of
the top row is easy.

Finally, Pic(X) is represented by equivalence classes of continuous,
piecewise integral linear functions modulo linear functions. Clearly if
mφ is linear then so is φ, so that Pic(X) is torsion free. �
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