
2. Toric varieties

Definition 2.1. A fan in NR is a set F of finitely many strongly
convex rational polyhedra, such that

• every face of a cone in F is a cone in F , and
• the intersection of any two cones in F is a face of each cone.

We will see that the set of toric varieties, up to isomorphism, are in
bijection with fans, up to the action of SL(n,Z).

Given a fan F , we get a collection of affine toric varieties, one for
every cone of F . It remains to check how to glue these together to get
a toric variety. Suppose we are given two cones σ and τ belonging to
F . The intersection is a cone ρ which is also a cone belonging to F .
Since ρ is a face of both σ and τ there are natural inclusions

Uρ ⊂ Uσ and Uρ ⊂ Uτ .

We glue Uσ to Uτ using the natural identification of the common open
subset Uρ. Compatibility of gluing follows automatically from the fact
that the identification is natural and from the combinatorics of the fan
(see (2.12) of Hartshorne). It is clear that the resulting scheme is of
finite type over the groundfield. Separatedness follows from:

Lemma 2.2. Let σ and τ be two cones whose intersection is the cone
ρ.

If ρ is a face of each then the diagonal map

Uρ −→ Uσ × Uτ ,
is a closed embedding.

Proof. This is equivalent to the statement that the natural map

Aσ ⊗ Aτ −→ Aρ,

is surjective. For this, one just needs to check that

Sρ = Sσ + Sτ .

One inclusion is easy; the RHS is contained in the LHS. For the other
inclusion, one needs a standard fact from convex geometry, which is
called the separation lemma: there is a vector u ∈ Sσ ∩ S−τ such that
simultaneously

ρ = σ ∩ u⊥ and ρ = τ ∩ u⊥.
By the first equality and the fact that u ∈ Sσ, we have Sρ = Sσ+Z(−u).
As u ∈ S−τ we have −u ∈ Sτ and so the LHS is contained in the
RHS. �
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So we have shown that given a fan F we can construct a normal
variety X = X(F ). It is not hard to see that the natural action of the
torus corresponding to the zero cone extends to an action on the whole
of X. Therefore X(F ) is indeed a toric variety.

Let us look at some examples.

Example 2.3. Suppose that we start with M = Z and we let F be
the fan given by the three cones {0}, the cone spanned by e1 and the
cone spanned by −e1 inside NR = R. The two big cones correspond
to A1. We identify the two A1’s along the common open subset iso-
morphic to K∗. Now the first A1 = SpecK[x] and the second is
A1 = SpecK[x−1]. So the corresponding toric variety is P1 (if we
have homogeneous coordinates [X : Y ] on P1 coordinates on U0 are
x = X/Y and y = Y/X = 1/x).

Now suppose that we start with three cones in NR = R2, σ1, σ2 and
σ3. We let σ1 be the cone spanned by e1 and e2, σ2 be the cone spanned
by e2 and −e1 − e2 and σ be the cone spanned by −e1 − e2 and e1.
Let F be the fan given as the faces of these three cones. Note that the
three affine varieties corresponding to these three cones are all copies of
A2. Indeed, any two of the vectors, e1, e2 and −e1 − e2 are a basis not
only of the underlying vector space but they also generate the standard
lattice. We check how to glue two such copies of A2.

The dual cone of σ1 is the cone spanned by f1 and f2 in MR = R2.
The dual cone of σ2 is the cone spanned by −f1 and −f1 + f2. So
we have U1 = SpecK[x, y] and U2 = SpecK[x−1, x−1y]. On the other
hand, if we start with P2 with homogeneous coordinates [X : Y : Z]
and the two basic open subsets U0 = SpecK[Y/X,Z/X] and U1 =
SpecK[X/Y, Z/Y ], then we get the same picture, if we set x = Y/X,
y = Z/X (since then X/Y = x−1 and Z/Y = Z/X · X/Y = yx−1).
With a little more work one can check that we have P2.

More generally, suppose we start with n+1 vectors v1, v2, . . . , vn+1 in
NR = Rn which sum to zero such that the first n vectors v1, v2, . . . , vn
span the standard lattice. Let F be the fan obtained by taking all the
cones spanned by all subsets of at most n vectors. One can check that
the resulting toric variety is Pn.

Now suppose that we take the four vectors e1, e2, −e1 and −e2 in
NR = R2 and let F be the fan consisting of all cones spanned by at
most two vectors (but not pairs of inverse vectors, that is, neither e1
and −e1 nor e2 and −e2). Then we get four copies of A2. It is easy
to check that the resulting toric variety is P1 × P1. Indeed the top two
fans glue together to get P1 × A1 and so on.
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We have already seen that cones correspond to open subsets. In fact
cones also correspond (in some sort of dual sense) to closed subsets, the
closure of the orbits. First observe that given a fan F , we can associate
a closed point xσ to any cone σ. To see this, observe that one can spot
the closed points of Uσ using semigroups:

Lemma 2.4. Let S ⊂ M be a semigroup. Then there is a natural
bijection,

Hom(K[S], K) ' Hom(S,K).

Here the RHS is the set of semigroup homomorphisms, where K =
{0}∪K∗ is the multiplicative subsemigroup of K (and not the additive).

Proof. Suppose we are given a ring homomorphism

f : K[S] −→ K.

Define
g : S −→ K,

by sending u to f(χu). Conversely, given g, define f(χu) = g(u) and
extend linearly. �

Consider the semigroup homomorphism:

Sσ −→ {0, 1},
where {0, 1} ⊂ {0} ∪K∗ inherits the obvious semigroup structure. We
send u ∈ Sσ to 1 if u ∈ σ⊥ and send it 0 otherwise. Note that as σ⊥ is
a face of σ̌ we do indeed get a homomorphism of semigroups. By (2.4)
we get a surjective ring homomorphism

K[Sσ] −→ K.

The kernel is a maximal ideal of K[Sσ], that is a closed point xσ of Uσ,
with residue field K.

To get the orbits, take the orbits of these points. It follows that the
orbits are in correspondence with the cones in F . Let Oσ ⊂ Uσ be the
orbit of xσ and let V (σ) be the closure of Oσ.

Example 2.5. For the fan corresponding to P1, the point correspond-
ing to {0} is the identity, and the points corresponding to e1 and −e1
are 0 and ∞. For the fan corresponding to P2 the three maximal cones
give the three coordinate points, the three one dimensional cones give
the three coordinate lines (in fact the lines spanned by the points cor-
responding to the two maximal cones which contain them). As before
the zero cone corresponds to the identity point. The orbit is the whole
torus and the closure is the whole of P2.
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