## 2. Toric varieties

Definition 2.1. A fan in $N_{\mathbb{R}}$ is a set $F$ of finitely many strongly convex rational polyhedra, such that

- every face of a cone in $F$ is a cone in $F$, and
- the intersection of any two cones in $F$ is a face of each cone.

We will see that the set of toric varieties, up to isomorphism, are in bijection with fans, up to the action of $\operatorname{SL}(n, \mathbb{Z})$.

Given a fan $F$, we get a collection of affine toric varieties, one for every cone of $F$. It remains to check how to glue these together to get a toric variety. Suppose we are given two cones $\sigma$ and $\tau$ belonging to $F$. The intersection is a cone $\rho$ which is also a cone belonging to $F$. Since $\rho$ is a face of both $\sigma$ and $\tau$ there are natural inclusions

$$
U_{\rho} \subset U_{\sigma} \quad \text { and } \quad U_{\rho} \subset U_{\tau}
$$

We glue $U_{\sigma}$ to $U_{\tau}$ using the natural identification of the common open subset $U_{\rho}$. Compatibility of gluing follows automatically from the fact that the identification is natural and from the combinatorics of the fan (see (2.12) of Hartshorne). It is clear that the resulting scheme is of finite type over the groundfield. Separatedness follows from:

Lemma 2.2. Let $\sigma$ and $\tau$ be two cones whose intersection is the cone $\rho$.

If $\rho$ is a face of each then the diagonal map

$$
U_{\rho} \longrightarrow U_{\sigma} \times U_{\tau}
$$

is a closed embedding.
Proof. This is equivalent to the statement that the natural map

$$
A_{\sigma} \otimes A_{\tau} \longrightarrow A_{\rho},
$$

is surjective. For this, one just needs to check that

$$
S_{\rho}=S_{\sigma}+S_{\tau} .
$$

One inclusion is easy; the RHS is contained in the LHS. For the other inclusion, one needs a standard fact from convex geometry, which is called the separation lemma: there is a vector $u \in S_{\sigma} \cap S_{-\tau}$ such that simultaneously

$$
\rho=\sigma \cap u^{\perp} \quad \text { and } \quad \rho=\tau \cap u^{\perp} .
$$

By the first equality and the fact that $u \in S_{\sigma}$, we have $S_{\rho}=S_{\sigma}+\mathbb{Z}(-u)$. As $u \in S_{-\tau}$ we have $-u \in S_{\tau}$ and so the LHS is contained in the RHS.

So we have shown that given a fan $F$ we can construct a normal variety $X=X(F)$. It is not hard to see that the natural action of the torus corresponding to the zero cone extends to an action on the whole of $X$. Therefore $X(F)$ is indeed a toric variety.

Let us look at some examples.

Example 2.3. Suppose that we start with $M=\mathbb{Z}$ and we let $F$ be the fan given by the three cones $\{0\}$, the cone spanned by $e_{1}$ and the cone spanned by $-e_{1}$ inside $N_{\mathbb{R}}=\mathbb{R}$. The two big cones correspond to $\mathbb{A}^{1}$. We identify the two $\mathbb{A}^{1}$ 's along the common open subset isomorphic to $K^{*}$. Now the first $\mathbb{A}^{1}=\operatorname{Spec} K[x]$ and the second is $\mathbb{A}^{1}=\operatorname{Spec} K\left[x^{-1}\right]$. So the corresponding toric variety is $\mathbb{P}^{1}$ (if we have homogeneous coordinates $[X: Y]$ on $\mathbb{P}^{1}$ coordinates on $U_{0}$ are $x=X / Y$ and $y=Y / X=1 / x)$.

Now suppose that we start with three cones in $N_{\mathbb{R}}=\mathbb{R}^{2}, \sigma_{1}, \sigma_{2}$ and $\sigma_{3}$. We let $\sigma_{1}$ be the cone spanned by $e_{1}$ and $e_{2}, \sigma_{2}$ be the cone spanned by $e_{2}$ and $-e_{1}-e_{2}$ and $\sigma$ be the cone spanned by $-e_{1}-e_{2}$ and $e_{1}$. Let $F$ be the fan given as the faces of these three cones. Note that the three affine varieties corresponding to these three cones are all copies of $\mathbb{A}^{2}$. Indeed, any two of the vectors, $e_{1}, e_{2}$ and $-e_{1}-e_{2}$ are a basis not only of the underlying vector space but they also generate the standard lattice. We check how to glue two such copies of $\mathbb{A}^{2}$.

The dual cone of $\sigma_{1}$ is the cone spanned by $f_{1}$ and $f_{2}$ in $M_{\mathbb{R}}=\mathbb{R}^{2}$. The dual cone of $\sigma_{2}$ is the cone spanned by $-f_{1}$ and $-f_{1}+f_{2}$. So we have $U_{1}=\operatorname{Spec} K[x, y]$ and $U_{2}=\operatorname{Spec} K\left[x^{-1}, x^{-1} y\right]$. On the other hand, if we start with $\mathbb{P}^{2}$ with homogeneous coordinates $[X: Y: Z]$ and the two basic open subsets $U_{0}=\operatorname{Spec} K[Y / X, Z / X]$ and $U_{1}=$ Spec $K[X / Y, Z / Y]$, then we get the same picture, if we set $x=Y / X$, $y=Z / X$ (since then $X / Y=x^{-1}$ and $Z / Y=Z / X \cdot X / Y=y x^{-1}$ ). With a little more work one can check that we have $\mathbb{P}^{2}$.

More generally, suppose we start with $n+1$ vectors $v_{1}, v_{2}, \ldots, v_{n+1}$ in $N_{\mathbb{R}}=\mathbb{R}^{n}$ which sum to zero such that the first $n$ vectors $v_{1}, v_{2}, \ldots, v_{n}$ span the standard lattice. Let $F$ be the fan obtained by taking all the cones spanned by all subsets of at most $n$ vectors. One can check that the resulting toric variety is $\mathbb{P}^{n}$.

Now suppose that we take the four vectors $e_{1}, e_{2},-e_{1}$ and $-e_{2}$ in $N_{\mathbb{R}}=\mathbb{R}^{2}$ and let $F$ be the fan consisting of all cones spanned by at most two vectors (but not pairs of inverse vectors, that is, neither $e_{1}$ and $-e_{1}$ nor $e_{2}$ and $-e_{2}$ ). Then we get four copies of $\mathbb{A}^{2}$. It is easy to check that the resulting toric variety is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Indeed the top two fans glue together to get $\mathbb{P}^{1} \times \mathbb{A}^{1}$ and so on.

We have already seen that cones correspond to open subsets. In fact cones also correspond (in some sort of dual sense) to closed subsets, the closure of the orbits. First observe that given a fan $F$, we can associate a closed point $x_{\sigma}$ to any cone $\sigma$. To see this, observe that one can spot the closed points of $U_{\sigma}$ using semigroups:

Lemma 2.4. Let $S \subset M$ be a semigroup. Then there is a natural bijection,

$$
\operatorname{Hom}(K[S], K) \simeq \operatorname{Hom}(S, K)
$$

Here the RHS is the set of semigroup homomorphisms, where $K=$ $\{0\} \cup K^{*}$ is the multiplicative subsemigroup of $K$ (and not the additive).
Proof. Suppose we are given a ring homomorphism

$$
f: K[S] \longrightarrow K
$$

Define

$$
g: S \longrightarrow K
$$

by sending $u$ to $f\left(\chi^{u}\right)$. Conversely, given $g$, define $f\left(\chi^{u}\right)=g(u)$ and extend linearly.

Consider the semigroup homomorphism:

$$
S_{\sigma} \longrightarrow\{0,1\},
$$

where $\{0,1\} \subset\{0\} \cup K^{*}$ inherits the obvious semigroup structure. We send $u \in S_{\sigma}$ to 1 if $u \in \sigma^{\perp}$ and send it 0 otherwise. Note that as $\sigma^{\perp}$ is a face of $\check{\sigma}$ we do indeed get a homomorphism of semigroups. By (2.4) we get a surjective ring homomorphism

$$
K\left[S_{\sigma}\right] \longrightarrow K
$$

The kernel is a maximal ideal of $K\left[S_{\sigma}\right]$, that is a closed point $x_{\sigma}$ of $U_{\sigma}$, with residue field $K$.

To get the orbits, take the orbits of these points. It follows that the orbits are in correspondence with the cones in $F$. Let $O_{\sigma} \subset U_{\sigma}$ be the orbit of $x_{\sigma}$ and let $V(\sigma)$ be the closure of $O_{\sigma}$.
Example 2.5. For the fan corresponding to $\mathbb{P}^{1}$, the point corresponding to $\{0\}$ is the identity, and the points corresponding to $e_{1}$ and $-e_{1}$ are 0 and $\infty$. For the fan corresponding to $\mathbb{P}^{2}$ the three maximal cones give the three coordinate points, the three one dimensional cones give the three coordinate lines (in fact the lines spanned by the points corresponding to the two maximal cones which contain them). As before the zero cone corresponds to the identity point. The orbit is the whole torus and the closure is the whole of $\mathbb{P}^{2}$.

