
19. Projective geometry

Definition 19.1. Let S ⊂ Pn be a set of points.
We say that S is in linear general position if any subset of k ≤ n

points spana a (k − 1)-plane Λ.

Remark 19.2. Note that if S has at least n + 1 points then S is in
linear general position if every subset of n+ 1 points spans Pn.

Lemma 19.3. Any two sequences p0, p1, . . . , pn+1 and q0, q1, . . . , qn+2 of
n+ 2 points in linear general position in Pn are projectively equivalent,
that is, there is an element φ ∈ Aut(Pn) = PGL(n + 1) such that
φ(pi) = qi. Furthermore, φ is unique.

Proof. Since we are just saying there is one orbit on the set of n + 2
points in linear general position, we might as well take

p0 = [1 : 0 : · · · : 0], p1 = [0 : 1 : · · · : 0], . . . , pn = [0 : 0 : · · · : 1], pn+1 = [1 : 1 : · · · : 1].

In terms of existence, note that φ corresponds to an (n+ 1)× (n+ 1)
matrix with entries in K. The first n + 1 points correspond to n + 1
linearly independent vectors in Kn+1. There is a unique matrix A
sending one set of vectors to the others. At this point pi = qi, 0 ≤ i ≤ n
and qi = [a0 : a1 : · · · : an]. Since q0, q1, . . . , qn+2 are in linear general
position, it follows that ai 6= 0 for all i. But then the diagonal matrix
with 1/ai in the ith spot fixes pj, 0 ≤ j ≤ n and takes qn+1 to pn+1.

As for uniqueness, it is enough to show that the only φ which fixes
the sequence p0, p1, . . . , pn+1 is the identity. The fact that the corre-
sponding matrix fixes the first n+ 1 vectors, implies that the matrix is
diagonal. The fact it fixes pn+1 means the matrix is a scalar multiple
of the identity; but then φ is the identity. �

In the case n = 1, the three standard points p0, p1 and p2 correspond
to 0, ∞ and 1.

A little bit of notation. We will say that a curve C ⊂ Pn is a rational
normal curve if it is projectively equivalent to the curve

[S : T ] −→ [Sn : Sn−1T : · · · : T n].

Lemma 19.4. Let p1, p2, . . . , pn+3 be n + 3 points in linear general
position in Pn.

Then there is a unique rational normal curve C ⊂ Pn containing
p1, p2, . . . , pn+3.

Proof. We only prove existence. This will follow from the following way
to construct rational normal curves.
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Let G(S, T ) be a homogeneous polynomial of degree n + 1. Then
G(S, T ) factors,

G(S, T ) =
n∏

i=0

(µiSi − λiTi).

Assume that G(S, T ) has distinct roots, meaning that [λi : µi] ∈ P1 are
n+ 1 different points of P1. Consider the n+ 1 polynomials

Gi(S, T ) =
G(S, T )

µiSi − λiTi
,

of degree n. Note that G0, G1, . . . , Gn are independent in the space of
polynomials of degree n; indeed if∑

aiGi(S, T ) = 0,

then we see that ai = 0 after plugging in [λi : µi] ∈ P1.
It follows that the curve C given parametrically by

[S : T ] −→ [G0 : G1 : · · · : Gn],

is a rational normal curve.
We may rewrite this parametrisation as

[S : T ] −→ [
1

µ0S0 − λ0T0
:

1

µ1S1 − λ1T1
: · · · : 1

µnSn − λnTn
].

Written this way, we see that C passes through the n + 1 coordinate
points. Parametrically we send the zeroes of G to these points.

Now given any set of n+ 3 points in linear general position we have
already seen that we can choose the first n + 1 points to be the coor-
dinate points. This leaves two more points, pn+2 and pn+3. The image
of [1 : 0] is

[
1

µ0

:
1

µ1

: · · · : 1

µn

]

and the image of [0 : 1] is

[
1

λ0
:

1

λ1
: · · · : 1

λn
].

Now we can always choose pn+2 to be the point [1 : 1 : · · · : 1], in which
case we choose µi = 1 for all i. Finally the fact that the points are in
linear general position implies that the coordinates of pn+3 are distinct
and non-zero and we can choose λ0, λ1, . . . , λn accordingly. �

Example 19.5. There is a simple proof of (19.4) in the case when
n = 2. All rational normal curves are projectively equivalent, so in this
case a rational normal curve is the same as a conic.
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In this case we want to prove that there is a unique smooth conic
through any five points of P2, no three of which are collinear.

A conic is given by

aX2 + bY 2 + cZ2 + dY Z + eXZ + fXY,

and the space of all conics is naturally a copy of P5. The set of conics
passing through a fixed point p corresponds to a hyperplane Hp ⊂ P5.

The set of conics through five points is then the intersection of five
hyperplanes, which is always non-empty, so that there is always at least
one conic through any five points.

If the conic is not smooth then it is either a pair of lines or a double
line. A pair of lines can contain at most four points, if no three are
collinear and a double line can only contain two points. So there must
be a smooth conic containing the five points.

Suppose that there is more than one conic. Suppose that F and G
are the defining polynomials. Then the pencil of conics given by

λF + µG = 0,

where [λ : µ] ∈ P1 also contains all five points. But any pencil of
conics must contain a singular conic, and we have just seen that this
is impossible.

The next natural thing to look at are quadrics X ⊂ Pn, the zero sets
of quadratic polynomials F . The rank of X is the rank of F , that is,
the rank of the associated symmetric form.

Proposition 19.6. (1) Two quadrics are projectively equivalent if
and only if they have the same rank.

(2) If X has maximal rank n+ 1 and n > 1 then X is rational.
(3) If X has rank less than n + 1 and n > 1 then X is the cone

over a quadric in Pn−1.

Proof. (1) follows from the classification of symmetric bilinear forms
over an algebraically closed field.

By (1) every quadric is projectively equivalent to a quadric

X2
0 +X2

1 + · · ·+X2
k ,

where r = k + 1 is the rank. If k = n > 1 then X is irreducible. If
we pick a point p of X and project from that point then the resulting
rational map

π : X −→ Pn−1,

is birational. Geometrically, we pick an auxiliary hyperplane H '
Pn−1 ⊂ Pn and we send a point q ∈ X to the point r ∈ Pn−1 where the
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line 〈p, q〉 meets H. Any line through p only meets X in one further
point q and so π is generically one to one, and so has to be birational.

Algebraically, if H = (Xr = 0) and p = [0 : 0 : · · · : 0 : 1] and we
change coordinates to that F is

X2
0 +X2

1 + · · ·+X2
n−2 +Xn−1Xn,

then π is the map

[X0 : X1 : · · · : Xn] −→ [X0 : X1 : · · · : Xn−1].

The inverse rational map is the map

[Y0 : Y1 : · · · : Yn−1] −→ [Y0 : Y1 : · · · : Yn−1 : 1/Yn−1(Y
2
0 +Y 2

1 +· · ·+Y 2
n−2)].

If k < n then X is visibly a cone over quadric in the first n − 1
variables. �

The next thing to consider is cubics, that is, varieties defined by a
single cubic polynomial.

We start with cubic curves C in P2. We already know that if C is
smooth then C is not rational, since the genus is 1. If C is irreducible
but not smooth then projection from the singular point show that C is
rational, that is, birational to P1. In fact with a little bit more work,
one can show that C is projectively equivalent either to

Y 2Z = X2 +X3 or Y 2Z = X3,

a nodal cubic or a cuspidal cubic.
It is interesting to consider what happens if one projects from a point

p of a smooth cubic. A general line passes through two more points q
and r of the cubic and we get a double cover of P1. If we only get one
point q = r then the line through q is tangent to the curve.

It is a fact that if we choose p ∈ C general then there are only finitely
many lines through p which are tangent to C. For the cubic there are
four such lines, and this gives four points in P1. We can always choose
the first three points to to be 0, 1 and ∞ but the last point λ gives
moduli.

In fact the space of all cubics is nine dimensional,(
3 + 2

2

)
− 1 = 9.

PGL(3) has dimension 3× 3− 1 = 8. So we expect a one dimensional
family of non-projectively equivalent cubics.

The next thing to consider are cubic surfaces in P3.
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