19. Projective geometry

Definition 19.1. Let $S \subset \mathbb{P}^n$ be a set of points.

We say that S is in **linear general position** if any subset of $k \leq n$ points spana a (k-1)-plane Λ .

Remark 19.2. Note that if S has at least n + 1 points then S is in linear general position if every subset of n + 1 points spans \mathbb{P}^n .

Lemma 19.3. Any two sequences $p_0, p_1, \ldots, p_{n+1}$ and $q_0, q_1, \ldots, q_{n+2}$ of n+2 points in linear general position in \mathbb{P}^n are projectively equivalent, that is, there is an element $\phi \in \operatorname{Aut}(\mathbb{P}^n) = \operatorname{PGL}(n+1)$ such that $\phi(p_i) = q_i$. Furthermore, ϕ is unique.

Proof. Since we are just saying there is one orbit on the set of n + 2 points in linear general position, we might as well take

$$p_0 = [1:0:\dots:0], p_1 = [0:1:\dots:0], \dots, p_n = [0:0:\dots:1], p_{n+1} = [1:1:\dots:1]$$

In terms of existence, note that ϕ corresponds to an $(n+1) \times (n+1)$ matrix with entries in K. The first n+1 points correspond to n+1linearly independent vectors in K^{n+1} . There is a unique matrix Asending one set of vectors to the others. At this point $p_i = q_i, 0 \le i \le n$ and $q_i = [a_0 : a_1 : \cdots : a_n]$. Since $q_0, q_1, \ldots, q_{n+2}$ are in linear general position, it follows that $a_i \ne 0$ for all i. But then the diagonal matrix with $1/a_i$ in the *i*th spot fixes $p_i, 0 \le j \le n$ and takes q_{n+1} to p_{n+1} .

As for uniqueness, it is enough to show that the only ϕ which fixes the sequence $p_0, p_1, \ldots, p_{n+1}$ is the identity. The fact that the corresponding matrix fixes the first n+1 vectors, implies that the matrix is diagonal. The fact it fixes p_{n+1} means the matrix is a scalar multiple of the identity; but then ϕ is the identity. \Box

In the case n = 1, the three standard points p_0 , p_1 and p_2 correspond to $0, \infty$ and 1.

A little bit of notation. We will say that a curve $C \subset \mathbb{P}^n$ is a **rational** normal curve if it is projectively equivalent to the curve

$$[S:T] \longrightarrow [S^n: S^{n-1}T: \cdots: T^n].$$

Lemma 19.4. Let $p_1, p_2, \ldots, p_{n+3}$ be n+3 points in linear general position in \mathbb{P}^n .

Then there is a unique rational normal curve $C \subset \mathbb{P}^n$ containing $p_1, p_2, \ldots, p_{n+3}$.

Proof. We only prove existence. This will follow from the following way to construct rational normal curves.

Let G(S,T) be a homogeneous polynomial of degree n + 1. Then G(S,T) factors,

$$G(S,T) = \prod_{i=0}^{n} (\mu_i S_i - \lambda_i T_i).$$

Assume that G(S, T) has distinct roots, meaning that $[\lambda_i : \mu_i] \in \mathbb{P}^1$ are n+1 different points of \mathbb{P}^1 . Consider the n+1 polynomials

$$G_i(S,T) = \frac{G(S,T)}{\mu_i S_i - \lambda_i T_i},$$

of degree n. Note that G_0, G_1, \ldots, G_n are independent in the space of polynomials of degree n; indeed if

$$\sum a_i G_i(S,T) = 0,$$

then we see that $a_i = 0$ after plugging in $[\lambda_i : \mu_i] \in \mathbb{P}^1$.

It follows that the curve C given parametrically by

$$[S:T] \longrightarrow [G_0:G_1:\cdots:G_n],$$

is a rational normal curve.

We may rewrite this parametrisation as

$$[S:T] \longrightarrow \left[\frac{1}{\mu_0 S_0 - \lambda_0 T_0} : \frac{1}{\mu_1 S_1 - \lambda_1 T_1} : \dots : \frac{1}{\mu_n S_n - \lambda_n T_n}\right]$$

Written this way, we see that C passes through the n + 1 coordinate points. Parametrically we send the zeroes of G to these points.

Now given any set of n + 3 points in linear general position we have already seen that we can choose the first n + 1 points to be the coordinate points. This leaves two more points, p_{n+2} and p_{n+3} . The image of [1:0] is

$$\left[\frac{1}{\mu_0}:\frac{1}{\mu_1}:\cdots:\frac{1}{\mu_n}\right]$$

and the image of [0:1] is

$$[\frac{1}{\lambda_0}:\frac{1}{\lambda_1}:\cdots:\frac{1}{\lambda_n}].$$

Now we can always choose p_{n+2} to be the point $[1:1:\cdots:1]$, in which case we choose $\mu_i = 1$ for all *i*. Finally the fact that the points are in linear general position implies that the coordinates of p_{n+3} are distinct and non-zero and we can choose $\lambda_0, \lambda_1, \ldots, \lambda_n$ accordingly. \Box

Example 19.5. There is a simple proof of (19.4) in the case when n = 2. All rational normal curves are projectively equivalent, so in this case a rational normal curve is the same as a conic.

In this case we want to prove that there is a unique smooth conic through any five points of \mathbb{P}^2 , no three of which are collinear.

A conic is given by

$$aX^2 + bY^2 + cZ^2 + dYZ + eXZ + fXY,$$

and the space of all conics is naturally a copy of \mathbb{P}^5 . The set of conics passing through a fixed point p corresponds to a hyperplane $H_p \subset \mathbb{P}^5$.

The set of conics through five points is then the intersection of five hyperplanes, which is always non-empty, so that there is always at least one conic through any five points.

If the conic is not smooth then it is either a pair of lines or a double line. A pair of lines can contain at most four points, if no three are collinear and a double line can only contain two points. So there must be a smooth conic containing the five points.

Suppose that there is more than one conic. Suppose that F and G are the defining polynomials. Then the pencil of conics given by

$$\lambda F + \mu G = 0,$$

where $[\lambda : \mu] \in \mathbb{P}^1$ also contains all five points. But any pencil of conics must contain a singular conic, and we have just seen that this is impossible.

The next natural thing to look at are quadrics $X \subset \mathbb{P}^n$, the zero sets of quadratic polynomials F. The **rank** of X is the rank of F, that is, the rank of the associated symmetric form.

Proposition 19.6. (1) Two quadrics are projectively equivalent if and only if they have the same rank.

- (2) If X has maximal rank n + 1 and n > 1 then X is rational.
- (3) If X has rank less than n + 1 and n > 1 then X is the cone over a quadric in \mathbb{P}^{n-1} .

Proof. (1) follows from the classification of symmetric bilinear forms over an algebraically closed field.

By (1) every quadric is projectively equivalent to a quadric

$$X_0^2 + X_1^2 + \dots + X_k^2$$
,

where r = k + 1 is the rank. If k = n > 1 then X is irreducible. If we pick a point p of X and project from that point then the resulting rational map

$$\pi\colon X\longrightarrow \mathbb{P}^{n-1},$$

is birational. Geometrically, we pick an auxiliary hyperplane $H \simeq \mathbb{P}^{n-1} \subset \mathbb{P}^n$ and we send a point $q \in X$ to the point $r \in \mathbb{P}^{n-1}$ where the

line $\langle p, q \rangle$ meets H. Any line through p only meets X in one further point q and so π is generically one to one, and so has to be birational.

Algebraically, if $H = (X_r = 0)$ and $p = [0:0:\cdots:0:1]$ and we change coordinates to that F is

$$X_0^2 + X_1^2 + \dots + X_{n-2}^2 + X_{n-1}X_n,$$

then π is the map

$$[X_0:X_1:\cdots:X_n]\longrightarrow [X_0:X_1:\cdots:X_{n-1}].$$

The inverse rational map is the map

 $[Y_0: Y_1: \dots: Y_{n-1}] \longrightarrow [Y_0: Y_1: \dots: Y_{n-1}: 1/Y_{n-1}(Y_0^2 + Y_1^2 + \dots + Y_{n-2}^2)].$

If k < n then X is visibly a cone over quadric in the first n - 1 variables.

The next thing to consider is cubics, that is, varieties defined by a single cubic polynomial.

We start with cubic curves C in \mathbb{P}^2 . We already know that if C is smooth then C is not rational, since the genus is 1. If C is irreducible but not smooth then projection from the singular point show that C is rational, that is, birational to \mathbb{P}^1 . In fact with a little bit more work, one can show that C is projectively equivalent either to

$$Y^2 Z = X^2 + X^3$$
 or $Y^2 Z = X^3$.

a nodal cubic or a cuspidal cubic.

It is interesting to consider what happens if one projects from a point p of a smooth cubic. A general line passes through two more points q and r of the cubic and we get a double cover of \mathbb{P}^1 . If we only get one point q = r then the line through q is tangent to the curve.

It is a fact that if we choose $p \in C$ general then there are only finitely many lines through p which are tangent to C. For the cubic there are four such lines, and this gives four points in \mathbb{P}^1 . We can always choose the first three points to to be 0, 1 and ∞ but the last point λ gives moduli.

In fact the space of all cubics is nine dimensional,

$$\binom{3+2}{2} - 1 = 9.$$

PGL(3) has dimension $3 \times 3 - 1 = 8$. So we expect a one dimensional family of non-projectively equivalent cubics.

The next thing to consider are cubic surfaces in \mathbb{P}^3 .