19. Projective geometry

Definition 19.1. Let $S \subset \mathbb{P}^{n}$ be a set of points.
We say that S is in linear general position if any subset of $k \leq n$ points spana a $(k-1)$-plane Λ.

Remark 19.2. Note that if S has at least $n+1$ points then S is in linear general position if every subset of $n+1$ points spans \mathbb{P}^{n}.

Lemma 19.3. Any two sequences $p_{0}, p_{1}, \ldots, p_{n+1}$ and $q_{0}, q_{1}, \ldots, q_{n+2}$ of $n+2$ points in linear general position in \mathbb{P}^{n} are projectively equivalent, that is, there is an element $\phi \in \operatorname{Aut}\left(\mathbb{P}^{n}\right)=\operatorname{PGL}(n+1)$ such that $\phi\left(p_{i}\right)=q_{i}$. Furthermore, ϕ is unique .

Proof. Since we are just saying there is one orbit on the set of $n+2$ points in linear general position, we might as well take
$p_{0}=[1: 0: \cdots: 0], p_{1}=[0: 1: \cdots: 0], \ldots, p_{n}=[0: 0: \cdots: 1], p_{n+1}=[1: 1: \cdots: 1]$.
In terms of existence, note that ϕ corresponds to an $(n+1) \times(n+1)$ matrix with entries in K. The first $n+1$ points correspond to $n+1$ linearly independent vectors in K^{n+1}. There is a unique matrix A sending one set of vectors to the others. At this point $p_{i}=q_{i}, 0 \leq i \leq n$ and $q_{i}=\left[a_{0}: a_{1}: \cdots: a_{n}\right]$. Since $q_{0}, q_{1}, \ldots, q_{n+2}$ are in linear general position, it follows that $a_{i} \neq 0$ for all i. But then the diagonal matrix with $1 / a_{i}$ in the i th spot fixes $p_{j}, 0 \leq j \leq n$ and takes q_{n+1} to p_{n+1}.

As for uniqueness, it is enough to show that the only ϕ which fixes the sequence $p_{0}, p_{1}, \ldots, p_{n+1}$ is the identity. The fact that the corresponding matrix fixes the first $n+1$ vectors, implies that the matrix is diagonal. The fact it fixes p_{n+1} means the matrix is a scalar multiple of the identity; but then ϕ is the identity.

In the case $n=1$, the three standard points p_{0}, p_{1} and p_{2} correspond to $0, \infty$ and 1 .

A little bit of notation. We will say that a curve $C \subset \mathbb{P}^{n}$ is a rational normal curve if it is projectively equivalent to the curve

$$
[S: T] \longrightarrow\left[S^{n}: S^{n-1} T: \cdots: T^{n}\right] .
$$

Lemma 19.4. Let $p_{1}, p_{2}, \ldots, p_{n+3}$ be $n+3$ points in linear general position in \mathbb{P}^{n}.

Then there is a unique rational normal curve $C \subset \mathbb{P}^{n}$ containing $p_{1}, p_{2}, \ldots, p_{n+3}$.

Proof. We only prove existence. This will follow from the following way to construct rational normal curves.

Let $G(S, T)$ be a homogeneous polynomial of degree $n+1$. Then $G(S, T)$ factors,

$$
G(S, T)=\prod_{i=0}^{n}\left(\mu_{i} S_{i}-\lambda_{i} T_{i}\right)
$$

Assume that $G(S, T)$ has distinct roots, meaning that $\left[\lambda_{i}: \mu_{i}\right] \in \mathbb{P}^{1}$ are $n+1$ different points of \mathbb{P}^{1}. Consider the $n+1$ polynomials

$$
G_{i}(S, T)=\frac{G(S, T)}{\mu_{i} S_{i}-\lambda_{i} T_{i}},
$$

of degree n. Note that $G_{0}, G_{1}, \ldots, G_{n}$ are independent in the space of polynomials of degree n; indeed if

$$
\sum a_{i} G_{i}(S, T)=0
$$

then we see that $a_{i}=0$ after plugging in $\left[\lambda_{i}: \mu_{i}\right] \in \mathbb{P}^{1}$.
It follows that the curve C given parametrically by

$$
[S: T] \longrightarrow\left[G_{0}: G_{1}: \cdots: G_{n}\right]
$$

is a rational normal curve.
We may rewrite this parametrisation as

$$
[S: T] \longrightarrow\left[\frac{1}{\mu_{0} S_{0}-\lambda_{0} T_{0}}: \frac{1}{\mu_{1} S_{1}-\lambda_{1} T_{1}}: \cdots: \frac{1}{\mu_{n} S_{n}-\lambda_{n} T_{n}}\right]
$$

Written this way, we see that C passes through the $n+1$ coordinate points. Parametrically we send the zeroes of G to these points.

Now given any set of $n+3$ points in linear general position we have already seen that we can choose the first $n+1$ points to be the coordinate points. This leaves two more points, p_{n+2} and p_{n+3}. The image of $[1: 0]$ is

$$
\left[\frac{1}{\mu_{0}}: \frac{1}{\mu_{1}}: \cdots: \frac{1}{\mu_{n}}\right]
$$

and the image of $[0: 1]$ is

$$
\left[\frac{1}{\lambda_{0}}: \frac{1}{\lambda_{1}}: \cdots: \frac{1}{\lambda_{n}}\right] .
$$

Now we can always choose p_{n+2} to be the point $[1: 1: \cdots: 1]$, in which case we choose $\mu_{i}=1$ for all i. Finally the fact that the points are in linear general position implies that the coordinates of p_{n+3} are distinct and non-zero and we can choose $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ accordingly.
Example 19.5. There is a simple proof of (19.4) in the case when $n=2$. All rational normal curves are projectively equivalent, so in this case a rational normal curve is the same as a conic.

In this case we want to prove that there is a unique smooth conic through any five points of \mathbb{P}^{2}, no three of which are collinear.

A conic is given by

$$
a X^{2}+b Y^{2}+c Z^{2}+d Y Z+e X Z+f X Y
$$

and the space of all conics is naturally a copy of \mathbb{P}^{5}. The set of conics passing through a fixed point p corresponds to a hyperplane $H_{p} \subset \mathbb{P}^{5}$.

The set of conics through five points is then the intersection of five hyperplanes, which is always non-empty, so that there is always at least one conic through any five points.

If the conic is not smooth then it is either a pair of lines or a double line. A pair of lines can contain at most four points, if no three are collinear and a double line can only contain two points. So there must be a smooth conic containing the five points.

Suppose that there is more than one conic. Suppose that F and G are the defining polynomials. Then the pencil of conics given by

$$
\lambda F+\mu G=0
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$ also contains all five points. But any pencil of conics must contain a singular conic, and we have just seen that this is impossible.

The next natural thing to look at are quadrics $X \subset \mathbb{P}^{n}$, the zero sets of quadratic polynomials F. The rank of X is the rank of F, that is, the rank of the associated symmetric form.

Proposition 19.6. (1) Two quadrics are projectively equivalent if and only if they have the same rank.
(2) If X has maximal rank $n+1$ and $n>1$ then X is rational.
(3) If X has rank less than $n+1$ and $n>1$ then X is the cone over a quadric in \mathbb{P}^{n-1}.

Proof. (1) follows from the classification of symmetric bilinear forms over an algebraically closed field.

By (1) every quadric is projectively equivalent to a quadric

$$
X_{0}^{2}+X_{1}^{2}+\cdots+X_{k}^{2}
$$

where $r=k+1$ is the rank. If $k=n>1$ then X is irreducible. If we pick a point p of X and project from that point then the resulting rational map

$$
\pi: X \longrightarrow \mathbb{P}^{n-1}
$$

is birational. Geometrically, we pick an auxiliary hyperplane $H \simeq$ $\mathbb{P}^{n-1} \subset \mathbb{P}^{n}$ and we send a point $q \in X$ to the point $r \in \mathbb{P}^{n-1}$ where the
line $\langle p, q\rangle$ meets H. Any line through p only meets X in one further point q and so π is generically one to one, and so has to be birational.

Algebraically, if $H=\left(X_{r}=0\right)$ and $p=[0: 0: \cdots: 0: 1]$ and we change coordinates to that F is

$$
X_{0}^{2}+X_{1}^{2}+\cdots+X_{n-2}^{2}+X_{n-1} X_{n}
$$

then π is the map

$$
\left[X_{0}: X_{1}: \cdots: X_{n}\right] \longrightarrow\left[X_{0}: X_{1}: \cdots: X_{n-1}\right]
$$

The inverse rational map is the map
$\left[Y_{0}: Y_{1}: \cdots: Y_{n-1}\right] \longrightarrow\left[Y_{0}: Y_{1}: \cdots: Y_{n-1}: 1 / Y_{n-1}\left(Y_{0}^{2}+Y_{1}^{2}+\cdots+Y_{n-2}^{2}\right)\right]$.
If $k<n$ then X is visibly a cone over quadric in the first $n-1$ variables.

The next thing to consider is cubics, that is, varieties defined by a single cubic polynomial.

We start with cubic curves C in \mathbb{P}^{2}. We already know that if C is smooth then C is not rational, since the genus is 1 . If C is irreducible but not smooth then projection from the singular point show that C is rational, that is, birational to \mathbb{P}^{1}. In fact with a little bit more work, one can show that C is projectively equivalent either to

$$
Y^{2} Z=X^{2}+X^{3} \quad \text { or } \quad Y^{2} Z=X^{3}
$$

a nodal cubic or a cuspidal cubic.
It is interesting to consider what happens if one projects from a point p of a smooth cubic. A general line passes through two more points q and r of the cubic and we get a double cover of \mathbb{P}^{1}. If we only get one point $q=r$ then the line through q is tangent to the curve.

It is a fact that if we choose $p \in C$ general then there are only finitely many lines through p which are tangent to C. For the cubic there are four such lines, and this gives four points in \mathbb{P}^{1}. We can always choose the first three points to to be 0,1 and ∞ but the last point λ gives moduli.

In fact the space of all cubics is nine dimensional,

$$
\binom{3+2}{2}-1=9
$$

PGL(3) has dimension $3 \times 3-1=8$. So we expect a one dimensional family of non-projectively equivalent cubics.

The next thing to consider are cubic surfaces in \mathbb{P}^{3}.

