18. RIEMANN-ROCH
Let us turn to the proof of (17.4).

Definition 18.1. Let P(z) € Q[z] be a polynomial. We say that P(2)
is numerical if P(n) € Z for any sufficiently large integer n.
Lemma 18.2.

(1) If P(z) is a numerical polynomial then we may find integers
Co,C1, - - -, Cr Such that

P(z):co(i) +c1(ri1) + -+

In particular P(n) € Z for every n € Z.
(2) If f: Z — Z is any function and there is a numerical poly-

nomial Q(z) such that A(f) = f(n+1) — f(n) = Q(n) for
n sufficiently large then there is a numerical polynomial P(z)
such that f(n) = P(n) for n sufficiently large.

Proof. We prove (1) by induction on the degree r of P. Since

(z> 22(2—1)--;(z—r+1) _7,

r ! r!

..y

is a polynomial of degree n, they form a basis for all polynomials and
we may certainly find rationals ¢y, ¢y, ..., ¢, such that

z z
P(z) :Co(r> +Cl(r— 1) +-tc
Note that

Q(z) = AP(z) = P(2+1)— P(2) = ¢ (r ° 1) +eo (T - 2) tobe,

is a numerical polynomial. By induction on the degree, cg,c1,...,¢r1
are integers. It follows that ¢, is an integer, as P(n) is an integer for n
large. This is (1).

For (2), suppose that

oz =aP)+a(,Z)) e

for integers cg, ¢y, ..., c.. Let
z
)

P(2) = ¢ (H 1) o <f) +-
)

Then AP(z) = Q(z) so that (f — P)(n) is a constant c¢,,; for any
n sufficiently large, so that f(n) = P(n) + ¢,41 for any n sufficiently
large. 0



Theorem 18.3 (Asymptotic Riemann-Roch). Let X be a normal pro-
jective variety of dimension n and let Ox (1) be a very ample line bun-
dle. Suppose that X C P* has degree d.

Then

n

dm
=+
n!
is a polynomial of degree n, for m large enough, with the given leading
term.

RO(X,Ox(m)) =

Proof. First suppose that X is smooth. Let Y be a general hyper-
plane section. Then Y is smooth by Bertini. The trick is to compute
X(X,Ox(m)) by looking at the exact sequence

0 — Ox(m—1) — Ox(m) — Oy(m) — 0.
The Euler characteristic is additive so that
X(X, Ox(m)) — x(X,Ox(m — 1)) = x(Y, Oy (m)).

(18.2)) implies that x (X, Ox(m)) is a polynomial of degree n, with the
given leading term. Now apply Serre vanishing.

For the general case we need that if X is normal and Y is a general
hyperplane section, then Y is a normal projective variety of degree d.
Y is regular in codimension one by a Bertini type argument and one
can check that Y is S,. ]

We will only need (18.3]) for the method of Albanese, but it is fun to
use similar arguments to prove special cases of Riemann-Roch.

Theorem 18.4 (Riemann-Roch for curves). Let C' be a smooth pro-
jective curve of genus g and let D be a divisor of degree d.

h(X,0¢(D)) =d—g+1+1°(C,Oc(Ko — D)).
Proof. We first check that
X(C,0c(D)) =d—g+1.

We proceed by induction on ) |a;|. Let p = p;. If a; > 0 then consider
the short exact sequence

0 — Oc(D —p) — Oc(D) — O, — 0.

We may write

The Euler characteristic is additive, so that



The LHS is equal to (d —1) —g+1+1=d — g+ 1 by induction. If
a1 < 0 then consider the short exact sequence

0 — Oc(D) — Oc(D +p) — O, — 0.
The Euler characteristic is additive, so that
X(C, Oc(D —p)) = x(C,0c(D +p)) — 1.
The RHS isequaltod —g+1—1=(d—1) — g + 1 by induction.
So we are reduced to the case when d = 0. Note that
h'(C,0c(D)) = h°(C,O0c(Ke — D)),
by Serre duality. In particular
X(C,0c) =1-gy,

which completes the induction. O

To state Riemann-Roch for surfaces, we will need intersection num-
bers. Suppose we work over C. Consider the long exact sequence
associated to the exponential sequence:

0 —7Z— 0y — 0y —0

The relevant part we are interested in is the group homomorphism:
c1: Pic(X) — H*(X,Z).
Here we identified
H'(X,0%),
with the group of line bundles. One can use this to define intersection
numbers, using cup product of cohomology. If £L = Ox(L), so that L

is the divisor of zeroes and poles of a rational section of the invertible
sheaf L, we will use the notation

(L)t =1L",
to denote the top self-intersection.

Theorem 18.5 (Riemann-Roch for surfaces). Let S be a smooth pro-
jective surface of irreqularity q and geometric genus p, over an alge-
braically closed field of characteristic zero. Let D be a divisor on S.

D?* Kg-D
X(8,05(D)) = —- =

2 2
Proof. Pick a very ample divisor H such that H + D is very ample. Let
C and X be general elements of |H| and |H + D|. Then C' and ¥ are
smooth. There are two exact sequences

0—)05(D) —>05(D+H) —>Oc(D+H) — 0
3
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and
0— 0 —O0s(D+H) — Ox(D+ H) — 0.

As the Euler characteristic is additive we have

X(S,0s(D + H)) = x(5,0s(D)) + x(C,Oc(D + H))
X(S,05(D + H)) = x(S,0) + X(5, Os(D + H)).
Subtracting we get
x(S,0s5(D)) — x(S,05) = x(2,05(D + H)) — x(C,Oc(D + H)).
Now
X2, 0s(D+H))=(D+H) ¥ —degKyx/2
X(C,0c(D+H)=(D+H)-C—degK¢/2,
applying Riemann-Roch for curves to both C' and ». We have
(D+H)-YX=(D+H)-H+(D+H)-D,
and by adjunction
Ky =(Ks+ X)X and Ke=(Ks+C)-C.
So putting all of this together we get

(S, O05(D)) — x(S,0g) = (D + H) - D+ ~((Ks + C) - C — (Kg + %) - %)

2
1 1
:(D+H)-D+§Ks-(C’—Z)+§(H-H—(H+D)-(H+D))
DD 1o,
2 2

We have
c=x(S,0g) = h’(S,0g) — h'(S,0s) + h*(5,05) =1 — q + p,.
Here we used the highly non-trivial fact that
h'(S,0s) = h°(8,95) = q,
from Hodge theory and Serre duality
h*(S,Og) = h°(S,ws) = p,- O

Definition 18.6. Let X be a quasi-projective variety and let K be the
function field of X. Let L/K be a finite field extension.

The normalisation of X in L is a finite morphism ¥ — X,
where Y is a normal quasi-projective variety and the function field of

Y is L.
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One can consruct Y in much the same way that one constructs the
normalisation. It suffices to construct Y locally, in which case we may
assume that X = Spec A is affine. In this case one simply takes ¥ =
Spec B, where B is the integral closure of A inside L.

Lemma 18.7. Let w: Y — X be a finite morphism.
If 7(g) = p, then
mult, Y = degm - mult, X.

Proof of (17.4). By we may pick m sufficiently large such that
if

deg Xy, C P"
is the embedding given by Ox(m), then

do < (n!+1)(r+1—n).
By (17.3) we may find a generically finite morphism f: X --+ W such
that either
deg f mult,, W < n!,

or W is a cone and

deg f < nl.
If W is a cone, then W is birational to a product P' x W’. By our
induction hypothesis, W’ is birational to a smooth projective variety
W”. Then W is birational to W” x P!. Replacing W by W” x P!, we
may assume that W is smooth.

Let m: Y — W be the normalisation of W in the field L = K(X)/K(W).

Then Y is birational to X and deg f = degw. By ,

mult, Y < nl. O
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