
18. Riemann-Roch

Let us turn to the proof of (17.4).

Definition 18.1. Let P (z) ∈ Q[z] be a polynomial. We say that P (z)
is numerical if P (n) ∈ Z for any sufficiently large integer n.

Lemma 18.2.

(1) If P (z) is a numerical polynomial then we may find integers
c0, c1, . . . , cr such that

P (z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr.

In particular P (n) ∈ Z for every n ∈ Z.
(2) If f : Z −→ Z is any function and there is a numerical poly-

nomial Q(z) such that ∆(f) = f(n + 1) − f(n) = Q(n) for
n sufficiently large then there is a numerical polynomial P (z)
such that f(n) = P (n) for n sufficiently large.

Proof. We prove (1) by induction on the degree r of P . Since(
z

r

)
=
z(z − 1) · · · (z − r + 1)

r!
=
zr

r!
+ . . . ,

is a polynomial of degree n, they form a basis for all polynomials and
we may certainly find rationals c0, c1, . . . , cr such that

P (z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr.

Note that

Q(z) = ∆P (z) = P (z+1)−P (z) = c0

(
z

r − 1

)
+c1

(
z

r − 2

)
+· · ·+cr−1,

is a numerical polynomial. By induction on the degree, c0, c1, . . . , cr−1

are integers. It follows that cr is an integer, as P (n) is an integer for n
large. This is (1).

For (2), suppose that

Q(Z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr,

for integers c0, c1, . . . , cr. Let

P (z) = c0

(
z

r + 1

)
+ c1

(
z

r

)
+ · · ·+ cr

(
z

1

)
.

Then ∆P (z) = Q(z) so that (f − P )(n) is a constant cr+1 for any
n sufficiently large, so that f(n) = P (n) + cr+1 for any n sufficiently
large. �

1



Theorem 18.3 (Asymptotic Riemann-Roch). Let X be a normal pro-
jective variety of dimension n and let OX(1) be a very ample line bun-
dle. Suppose that X ⊂ Pk has degree d.

Then

h0(X,OX(m)) =
dmn

n!
+ ...,

is a polynomial of degree n, for m large enough, with the given leading
term.

Proof. First suppose that X is smooth. Let Y be a general hyper-
plane section. Then Y is smooth by Bertini. The trick is to compute
χ(X,OX(m)) by looking at the exact sequence

0 −→ OX(m− 1) −→ OX(m) −→ OY (m) −→ 0.

The Euler characteristic is additive so that

χ(X,OX(m))− χ(X,OX(m− 1)) = χ(Y,OY (m)).

(18.2) implies that χ(X,OX(m)) is a polynomial of degree n, with the
given leading term. Now apply Serre vanishing.

For the general case we need that if X is normal and Y is a general
hyperplane section, then Y is a normal projective variety of degree d.
Y is regular in codimension one by a Bertini type argument and one
can check that Y is S2. �

We will only need (18.3) for the method of Albanese, but it is fun to
use similar arguments to prove special cases of Riemann-Roch.

Theorem 18.4 (Riemann-Roch for curves). Let C be a smooth pro-
jective curve of genus g and let D be a divisor of degree d.

h0(X,OC(D)) = d− g + 1 + h0(C,OC(KC −D)).

Proof. We first check that

χ(C,OC(D)) = d− g + 1.

We may write

D =
∑

aipi.

We proceed by induction on
∑
|ai|. Let p = p1. If a1 > 0 then consider

the short exact sequence

0 −→ OC(D − p) −→ OC(D) −→ Op −→ 0.

The Euler characteristic is additive, so that

χ(C,OC(D)) = χ(C,OC(D − p)) + 1.
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The LHS is equal to (d − 1) − g + 1 + 1 = d − g + 1 by induction. If
a1 < 0 then consider the short exact sequence

0 −→ OC(D) −→ OC(D + p) −→ Op −→ 0.

The Euler characteristic is additive, so that

χ(C,OC(D − p)) = χ(C,OC(D + p))− 1.

The RHS is equal to d− g + 1− 1 = (d− 1)− g + 1 by induction.
So we are reduced to the case when d = 0. Note that

h1(C,OC(D)) = h0(C,OC(KC −D)),

by Serre duality. In particular

χ(C,OC) = 1− g,
which completes the induction. �

To state Riemann-Roch for surfaces, we will need intersection num-
bers. Suppose we work over C. Consider the long exact sequence
associated to the exponential sequence:

0 −→ Z −→ Oan
X −→ O∗X −→ 0

The relevant part we are interested in is the group homomorphism:

c1 : Pic(X) −→ H2(X,Z).

Here we identified
H1(X,O∗X),

with the group of line bundles. One can use this to define intersection
numbers, using cup product of cohomology. If L = OX(L), so that L
is the divisor of zeroes and poles of a rational section of the invertible
sheaf L, we will use the notation

c1(L)n = Ln,

to denote the top self-intersection.

Theorem 18.5 (Riemann-Roch for surfaces). Let S be a smooth pro-
jective surface of irregularity q and geometric genus pg over an alge-
braically closed field of characteristic zero. Let D be a divisor on S.

χ(S,OS(D)) =
D2

2
− KS ·D

2
+ 1− q + pg.

Proof. Pick a very ample divisor H such that H+D is very ample. Let
C and Σ be general elements of |H| and |H + D|. Then C and Σ are
smooth. There are two exact sequences

0 −→ OS(D) −→ OS(D +H) −→ OC(D +H) −→ 0
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and

0 −→ OS −→ OS(D +H) −→ OΣ(D +H) −→ 0.

As the Euler characteristic is additive we have

χ(S,OS(D +H)) = χ(S,OS(D)) + χ(C,OC(D +H))

χ(S,OS(D +H)) = χ(S,OS) + χ(Σ,OΣ(D +H)).

Subtracting we get

χ(S,OS(D))− χ(S,OS) = χ(Σ,OΣ(D +H))− χ(C,OC(D +H)).

Now

χ(Σ,OΣ(D +H)) = (D +H) · Σ− degKΣ/2

χ(C,OC(D +H)) = (D +H) · C − degKC/2,

applying Riemann-Roch for curves to both C and Σ. We have

(D +H) · Σ = (D +H) ·H + (D +H) ·D,

and by adjunction

KΣ = (KS + Σ) · Σ and KC = (KS + C) · C.

So putting all of this together we get

χ(S,OS(D))− χ(S,OS) = (D +H) ·D +
1

2
((KS + C) · C − (KS + Σ) · Σ)

= (D +H) ·D +
1

2
KS · (C − Σ) +

1

2
(H ·H − (H +D) · (H +D))

=
D ·D

2
− 1

2
KS ·D.

We have

c = χ(S,OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = 1− q + pg.

Here we used the highly non-trivial fact that

h1(S,OS) = h0(S,Ω1
S) = q,

from Hodge theory and Serre duality

h2(S,OS) = h0(S, ωS) = pg. �

Definition 18.6. Let X be a quasi-projective variety and let K be the
function field of X. Let L/K be a finite field extension.

The normalisation of X in L is a finite morphism Y −→ X,
where Y is a normal quasi-projective variety and the function field of
Y is L.
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One can consruct Y in much the same way that one constructs the
normalisation. It suffices to construct Y locally, in which case we may
assume that X = SpecA is affine. In this case one simply takes Y =
SpecB, where B is the integral closure of A inside L.

Lemma 18.7. Let π : Y −→ X be a finite morphism.
If π(q) = p, then

multq Y = deg π ·multpX.

Proof of (17.4). By (18.3) we may pick m sufficiently large such that
if

degX0 ⊂ Pr

is the embedding given by OX(m), then

d0 ≤ (n! + 1)(r + 1− n).

By (17.3) we may find a generically finite morphism f : X 99K W such
that either

deg f multwW ≤ n!,

or W is a cone and
deg f ≤ n!.

If W is a cone, then W is birational to a product P1 ×W ′. By our
induction hypothesis, W ′ is birational to a smooth projective variety
W ′′. Then W is birational to W ′′ × P1. Replacing W by W ′′ × P1, we
may assume that W is smooth.

Let π : Y −→ W be the normalisation ofW in the field L = K(X)/K(W ).
Then Y is birational to X and deg f = deg π. By (18.7),

multy Y ≤ n!. �
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