
17. The Albanese method

Beyond the dimension of the Zariski tangent space, perhaps the most
basic invariant of any singular point is:

Definition 17.1. Let X ⊂M be a subvariety of a smooth variety. The
multiplicity of X at p ∈M is the largest µ such that Ip ⊂ mµ where
m is the maximal ideal of M at p in OM,p and I is the ideal sheaf of
X in M .

Example 17.2. Let X ⊂ An+1 be defined by a single equation

f(x1, x2, . . . , xn) = 0.

The multiplicity of X at the origin is the degree of as a power series,
that is, the smallest degree of a monomial which appears in f .

The multiplicity has two basic properties. X is smooth at p if
and only if the multiplicity is one and the multiplicity is upper semi-
continuous in families.

We next describe the method of Albanese. Start with X ⊂ Pn. Now
re-embed X by the very ample line bundle OX(m), where m is very
large, so that X = X0 ⊂ Pr, where r is large. Pick a point p = p0 ∈ X0,
where the multiplicity is largest, to get X1 ⊂ Pr−1. Now pick a point
p1 ∈ X1 of largest multiplicity and project down to get X2 ⊂ Pr−2.
Continuing in this way, always projecting from a point of maximal
mulitplicity, we construct Xi ⊂ Pr−i.

Theorem 17.3. If

degX0 < (n! + 1)(r + 1− n),

then the Albanese algorithm stops with a variety Xk and a generically
finite map fk : X0 99K Xk, such that either

(1) deg fk multp(Xk) ≤ n!, or
(2) Xk is a cone and deg fk ≤ n!.

Corollary 17.4. Assume that every variety of dimension at most n−1
is birational to a smooth projective variety.

Then every projective variety is birational to a projective variety with
singularities of multiplicity at most n!.

Note that this resolves singularities for curves, since 1! = 1 and a
point of multiplicity one is a smooth point of X. Even for surfaces we
get down to points of multiplicity two, which are not so bad. Starting
with threefolds, the situation is not nearly so rosy, especially when one
realises that if f is a hypersurface singularity of arbitrary multiplicity,
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then the suspension of f , x2 + f , is a hypersurface singularity of mul-
tiplicity two. It is pretty clear that resolving x2 + f entails resolving
f .

Unfortunately it seems impossible to improve the bound given in
(17.3).

We will need:

Theorem 17.5. Let X ⊂ Pr be an irreducible projective variety of
degree d and dimension n.

If X is not contained in a hyperplane, then

d ≥ r + 1− n.

Proof of (17.3). We will prove by induction on k that if after the first
k steps we don’t have a cone and (1) never holds, that

deg fk ·multp(Xk) ≤ (n! + 1)(r − k + 1− n).

Suppose that p is a point of maximal multiplicity µ. If Xk is a cone
with vertex p, then there is nothing to prove. Otherwise let Xk+1 be the
closure of the image of p under projection, and let π : Xk 99K Xk+1 be
the resulting rational map. As Xk is not a cone over p, π is generically
finite.

Let dk be the degree of Xk. The degree of π is the number of times
a general line through p and another point of Xk meets Xk outside p.
The degree dk+1 of Xk+1 is the number of points a general space Λ of
dimension n + k + 1 − r will meet Xk+1 ⊂ Pr−k−1. Let Λ′ = 〈Λ, p〉 be
the span of Λ and p. This will meet Xk+1 in dk − µ points, other than
p. So, we have

deg π · dk+1 = dk − µ.
If

deg fk · µ > n!,

then

deg fk+1 · dk+1 = deg fk deg π · dk+1

= deg fk · dk − deg fkµ

≤ deg fk · dk − (n! + 1)

≤ (n! + 1)(r − k + 1− n)− (n! + 1)

≤ (n! + 1)(r − (k + 1) + 1− n).

This completes the induction.
It follows that eventually either

deg fk ·multpXk ≤ n!,
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which is case (1) or we get a cone (in the extreme case when k = r−n,
so that Xk = Pn then we have a cone, since Pn is cone).

As Xk ⊂ Pr−k is not contained in a hyperplane, we have

dk ≥ (r − k + 1− n).

It follows that if Xk is a cone, then

deg fk ≤ n!. �

Notice how truly bizarre this argument is; presumably projecting
from a point will introduce all sorts of bad singularities (corresponding
to secant lines and so on), but just by projecting from the point of
maximal multiplicity works.

Example 17.6. Let

m1 ≤ m2 ≤ · · · ≤ mr,

be a sequence of positive integers. Let C be the image of

t −→ (tm1 , tm2 , tm3 , . . . , tmr),

inside Ar. If we project from (1, 0, 0, . . . , 0), then we get the image of

t −→ (tm2−m1 , tm3−m1
2 , tm4−m1

3 , . . . , tmr−m1
r ),

inside Ar−1. It is intuitively clear that the projection of C is less singu-
lar than C, but it is hard to say exactly why; for example the multiplicity
might go up.
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