
15. Cohomology of projective space

Let us calculate the cohomology of projective space.

Theorem 15.1. Let A be a Noetherian ring. Let X = Pr
A.

(1) The natural map S −→ Γ∗(X,OX) is an isomorphism.
(2)

H i(X,OX(n)) = 0 for all 0 < i < r and n.

(3)

Hr(X,OX(−r − 1)) ' A.

(4) The natural map

H0(X,OX(n))×Hr(X,OX(−n− r−1)) −→ Hr(X,OX(−r−1)) ' A,

is a perfect pairing of finitely generated free A-modules.

Proof. Let

F =
⊕
n∈Z

OX(n).

Then F is a quasi-coherent sheaf. Let U be the standard open affine
cover. As every intersection is affine, it follows that we may compute
sheaf cohomology using this cover. Now

Γ(UI ,F) = SxI
,

where

xI =
∏
i∈I

xi.

Thus Čech cohomology is the cohomology of the complex
r∏

i=0

Sxi
−→

r∏
i<j

Sxixj
−→ . . . −→ Sx0x1,...xr .

The kernel of the first map is just H0(X,F), which we already know
is S. Now let us turn to Hr(X,F). It is the cokernel of the map∏

i

Sx0x1...x̂i...xr −→ Sx0x1...xr .

The last term is the free A-module with generators all monomials in
the Laurent ring (that is, we allow both positive and negative powers).

The image is the set of monomials where xi has non-negative expo-
nent for at least one i. Thus the cokernel is naturally identified with
the free A-module generated by arbitrary products of reciprocals x−1i ,

{xl00 xl11 . . . xlrr | li < 0 }.
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The grading is then given by

l =
r∑

i=0

li.

In particular
Hr(X,OX(−r − 1)),

is the free A-module with generator x−10 x−11 . . . x−1r . Hence (3).
To define a pairing, we declare

xl00 x
l1
1 . . . x

lr
r ,

to be the dual of

xm0
0 xm1

1 . . . xmr
r = x−1−l00 x−1−l11 . . . x−1−lrr .

As mi ≥ 0 if and only if li < 0 it is straightforward to check that this
gives a perfect pairing. Hence (4).

It remains to prove (2). If we localise the complex above with respect
to xr, we get a complex which computes F|Ur , which is zero in positive
degree, as Ur is affine. Thus

H i(X,F)xr = 0,

for i > 0 so that every element of H i(X,F) is annihilated by some
power of xr.

To finish the proof, we will show that multiplication by xr induces an
inclusion of cohomology. We proceed by induction on the dimension.
Suppose that r > 1 and let Y ' Pr−1

A be the hyperplane xr = 0. Then

IY = OX(−Y ) = OX(−1).

Thus there are short exact sequences

0 −→ OX(n− 1) −→ OX(n) −→ OY (n) −→ 0.

Now H i(Y,OY (n)) = 0 for 0 < i < r−1, by induction, and the natural
restriction map

H0(X,OX(n)) −→ H0(Y,OY (n)),

is surjective (every polynomial of degree n on Y is the restriction of a
polynomial of degree n on X). Thus

H i(X,OX(n− 1)) ' H i(X,OX(n)),

for 0 < i < r − 1, and even if i = r − 1, then we get an injective map.
But this map is the one induced by multiplication by xr. �

Theorem 15.2 (Serre vanishing). Let X be a projective variety over a
Noetherian ring and let OX(1) be a very ample line bundle on X. Let
F be a coherent sheaf.
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(1) H i(X,F) are finitely generated A-modules.
(2) There is an integer n0 such that H i(X,F(n)) = 0 for all n ≥ n0

and i > 0.

Proof. By assumption there is an immersion i : X −→ Pr
A such that

OX(1) = i∗OPr
A

(1). As X is projective, it is proper and so i is a closed
immersion. If G = i∗F then

H i(Pr
A,G) ' H i(X,F).

Replacing X by Pr
A and F by G we may assume that X = Pr

A.
If F = OX(q) then the result is given by (15.1). Thus the result

also holds is F is a direct sum of invertible sheaves. The general case
proceeds by descending induction on i. Now

H i(X,F) = 0,

if i > r, by Grothendieck’s vanishing theorem. On the other hand, F
is a quotient of a direct sum E of invertible sheaves. Thus there is an
exact sequence

0 −→ R −→ E −→ F −→ 0,

where R is coherent. Twisting by OX(n) we get

0 −→ R(n) −→ E(n) −→ F(n) −→ 0.

Taking the long exact sequence of cohomology, we get isomorphisms

H i(X,F(n)) ' H i+1(X,R(n)),

for n large enough, and we are done by descending induction on i. �

Theorem 15.3. Let A be a Noetherian ring and let X be a proper
scheme over A. Let L be an invertible sheaf on X. TFAE

(1) L is ample.
(2) For every coherent sheaf F on X there is an integer n0 such

that
H i(X,F ⊗ Ln) = 0,

for n > n0.

Proof. Suppose that (1) holds. Pick a positive integer m such that
M = L⊗m is very ample. Let Fr = F ⊗ Lr, for 0 ≤ r ≤ m − 1. By
(15.2) we may find nr depending on r such that H i(X,Fr ⊗Mn) = 0
for all n > nr and i > 0. Let p be the maximum of the nr. Given
n > n0 = pm, we may write n = qm + r, for some 0 ≤ r ≤ m− 1 and
q > p. Then

H i(X,F ⊗ Ln) = H i(X,Fi ⊗Mq) = 0,

for any i > 0. Hence (1) implies (2).
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Now suppose that (2) holds. Let F be a coherent sheaf. Let p ∈ X
be a closed point. Consider the short exact sequence

0 −→ IpF −→ F −→ F ⊗Op −→ 0,

where Ip is the ideal sheaf of p. If we tensor this exact sequence with
Ln we get an exact sequence

0 −→ IpF ⊗ Ln −→ F ⊗Ln −→ F ⊗Ln ⊗Op −→ 0.

By hypotheses we can find n0 such that

H1(X, IpF ⊗ Ln) = 0,

for all n ≥ n0. It follows that the natural map

H0(X,F ⊗ Ln) −→ H0(X,F ⊗ Ln ⊗Op),

is surjective, for all n ≥ n0. It follows by Nakayama’s lemma applied to
the local ring OX,p that that the stalk of F ⊗Ln is generated by global
sections. As F is a coherent sheaf, for each integer n 6= n0 there is an
open subset U , depending on n, such that sections of H0(X,F ⊗ Ln)
generate the sheaf at every point of U .

If we take L = OX it follows that there is an integer n1 such that
Ln1 is generated by global sections over an open neighbourhood V of
p. For each 0 ≤ r ≤ n1 − 1 we may find Ur such that F ⊗ Ln0+r is
generated by global sections over Ur. Now let

Up = V ∩ U0 ∩ U1 ∩ · · · ∩ Un1−1.

Then

F ⊗ Ln = (F ⊗ Ln0+r)⊗ (Ln1)m,

is generated by global sections over the whole of Up for all n 6= n0.
Now use compactness of X to conclude that we can cover X by

finitely many Up. �

Theorem 15.4 (Serre duality). Let X be a smooth projective variety
of dimension n over an algebraically closed field. Then there is an
invertible sheaf ωX such that

(1) hn(X,ωX) = 1.
(2) Given any other invertible sheaf L there is a perfect pairing

H i(X,L)×Hn−i(X,ωX ⊗ L∗) −→ Hn(X,ωX).

Example 15.5. Let X = Pr
k. Then ωX = OX(−r − 1) is a dualising

sheaf.
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In fact, on any smooth projective variety, the dualising sheaf is pre-
cisely the canonical sheaf. This expresses a remarkable coincidence be-
tween the dualising sheaf, which is something defined in terms of sheaf
cohomology and the determinant of the sheaf of Kähler differentials,
which is something which comes from calculus on the variety.

Theorem 15.6. Let X = X(F ) be a toric variety over C and let D be
a T -Cartier divisor. Given u ∈M let

Z(u) = { v ∈ |F | | 〈u, v〉 ≥ ψD(v) }.
Then

Hp(X,OX(D)) =
⊕
u∈M

Hp(X,OX(D))u where Hp(X,OX(D))u = Hp
Z(u)(|F |).

Some explanation is in order. Note that the cohomology groups of
X are naturally graded by M . (15.6) identifies the graded pieces.

Hp
Z(u)(|F |) = Hp(|F |, |F | − Z(u),C).

denotes local cohomology. This comes with a long exact sequence for
the pair. If X is an affine toric variety then both |F | and Z(u) are
convex and the local cohomology vanishes. More generally, if D is am-
ple, then then both |F | and Z(u) are convex and the local cohomology
vanishes. This gives a slightly stronger result than Serre vanishing in
the case of an arbitrary variety.
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