13. Cohomology of Affine scheme

Proposition 13.1. Let I be an injective module over a noetherian ring A.

Then the sheaf \tilde{I} on $X = \operatorname{Spec} A$ is flasque.

Corollary 13.2. Let X be a noetherian scheme.

Then ever quasi-coherent sheaf \mathcal{F} on X can be embedded in a flasque, quasi-coherent sheaf \mathcal{G} .

Proof. Let $U_i = \operatorname{Spec} A_i$ be a finite open affine cover of X and let $\mathcal{F}|_{U_i} = \tilde{M}_i$ for each *i*. Pick an embedding of M_i into an injective A_i -module I_i . Let $f_i: U_i \longrightarrow X$ be the inclusion and let

$$\mathcal{G} = \bigoplus_{i} f_{i*} \tilde{I}_i.$$

Now for each *i* there is an injective map $\mathcal{F}|_{U_i} \longrightarrow \tilde{I}_i$, which induces a map $\mathcal{F} \longrightarrow f_{i*}\tilde{I}_i$. This induces a map $\mathcal{F} \longrightarrow \mathcal{G}$, which is clearly injective.

But \tilde{I}_i is flasque and quasi-coherent on U_i , so that $f_{i*}\tilde{I}_i$ is flasque and quasi-coherent on X. But then \mathcal{G} is flasque and quasi-coherent. \Box

Theorem 13.3 (Serre). Let X be a Noetherian scheme.

TFAE

- (1) X is affine,
- (2) $H^{i}(X, \mathcal{F}) = 0$ for all i > 0 and all quasi-coherent sheaves,
- (3) $H^1(X, \mathcal{I}) = 0$ for all coherent sheaves of ideals \mathcal{I} .

Proof. Suppose X is affine. Let $M = H^0(X, \mathcal{F})$ and take an injective resolution I^{\bullet} of M in the category of A-modules. Then \tilde{I}^{\bullet} is a flasque resolution of \mathcal{F} on X. If we take global sections we get back the original injective resolution of A, so that $H^i(X, \mathcal{F}) = 0$ for all i > 0. Thus (i) implies (ii).

(ii) implies (iii) is easy. Suppose that $H^1(X, \mathcal{I}) = 0$ for all coherent sheaves of ideals \mathcal{I} .

Fix a closed point p of X together with an open neighbourhood U of p and let Y = X - U. Then there is a short exact sequence

$$0 \longrightarrow \mathcal{I}_{Y \cup \{P\}} \longrightarrow \mathcal{I}_Y \longrightarrow k(P) \longrightarrow 0.$$

This gives us an exact sequence

$$H^0(X, \mathcal{I}_Y) \longrightarrow H^0(X, k(P)) \longrightarrow H^1(X, \mathcal{I}_{Y \cup \{P\}}) \longrightarrow 0.$$

But then there is regular function $f \in A = H^0(U, \mathcal{O}_U)$ which is not zero at p, so that $p \in X_f \subset U$ is an open neighbourhood of p. As $X_f = U_f$ it follows that X_f is affine.

As X is noetherian, it is compact, so that we can cover X by finitely many open affines, X_{f_i} , where $f_1, f_2, \ldots, f_r \in A$.

Finally we check that f_1, f_2, \ldots, f_r generate the unit ideal. There is a short exact sequence of sheaves

$$0\longrightarrow \mathcal{F}\longrightarrow \mathcal{O}_X^r\longrightarrow \mathcal{O}_X\longrightarrow 0.$$

The last map α sends (a_1, a_2, \ldots, a_r) to $\sum a_i f_i$. It is surjective as it is surjective on stalks. \mathcal{F} is then the kernel of α .

There is a filtration of \mathcal{F} as follows:

$$\mathcal{F} \cap \mathcal{O}_X \subset \mathcal{F} \cap \mathcal{O}_X^2 \subset \mathcal{F} \cap \mathcal{O}_X^3 \subset \mathcal{F} \cap \mathcal{O}_X^r = \mathcal{F}.$$

The quotients are naturally \mathcal{O}_X -submodules of \mathcal{O}_X , that is, the quotients are coherent sheaves of ideals. Taking the long exact sequence of cohomology (r times), we get that $H^1(X, \mathcal{F}) = 0$. Taking the long exact sequence of cohomology of the sequence above, we get that α is surjective. But then

$$1 = \alpha(a_1, a_2, \dots, a_r) = \sum a_i f_i,$$

in the ideal generated by f_1, f_2, \ldots, f_r . (II.2.17) shows that X is affine.